ООО “Приборостроительный завод ”ВИБРАТОР”
194292, Санкт-Петербург, 2-й Верхний пер., д.5 лит.А
СОДЕРЖАНИЕ

1 ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ.. 5
2 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ .. 6
3 ОПИСАНИЕ ПРИБОРА И ПРИНЦИПОВ ЕГО РАБОТЫ 7
 3.1 Назначение .. 7
 3.2 Условия эксплуатации ... 8
 3.3 Состав изделия ... 9
 3.4 Технические характеристики .. 10
 3.4.1 Прибор имеет исполнения, для которых приняты следующие обозначения: ... 10
 3.4.2 Характеристики входных каналов ... 10
 3.4.3 Характеристики цифровых (дискретных) входов 15
 3.4.4 Математические каналы ... 15
 3.4.5 Аналоговые выходы ... 16
 3.4.6 Сигнализация и регулирование .. 17
 3.4.7 Визуализация результатов измерений и ввод команд оператором ... 18
 3.4.8 Архивирование результатов измерений и журнал событий 19
 3.4.9 Связь с устройствами верхнего уровня ... 20
 3.4.10 Питание ... 21
 3.4.11 Изоляция электрических цепей ... 21
 3.4.12 Габаритные размеры и масса прибора .. 23
 3.5 Устройство и работа .. 24
 3.6 Разграничение прав доступа ... 25
4 ИНТЕРФЕЙС ОПЕРАТОРА ... 26
 4.1 Средства навигации и ввода символов ... 26
 4.2 Информация о приборе .. 27
 4.3 Режимы визуализации результатов измерений .. 34
 4.4 Архив измерений .. 42
 4.5 Журнал событий ... 48
 4.6 Копирование архива и журнала событий на Flash-накопитель 49
5 КОНФИГУРИРОВАНИЕ ПРИБОРА ... 52

<table>
<thead>
<tr>
<th>Лит.</th>
<th>Лист</th>
<th>Листов</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2</td>
<td>136</td>
</tr>
</tbody>
</table>

Регистратор щитовой электронный многоканальный Ф1771 – АД-М

Руководство по эксплуатации
5.1 Элементы интерфейса для ввода с помощью сенсорного экрана .. 52
5.2 Общие указания по настройке прибора ... 54
5.3 Общие настройки прибора, пароли, сохранение и загрузка файла конфигурации ... 55
5.4 Настройки экрана прибора ... 59
5.5 Настройка подключения прибора по интерфейсам ... 63
5.6 Настройка аналоговых входных каналов ... 65
5.7 Дискретные входы ... 71
5.8 Интерфейсные входы ... 73
5.9 Настройка каналов прибора ... 74
5.10 Конфигурирование групп каналов ... 80
5.11 Настройка событий ... 82
5.12 Настройка реле и аналоговых выходов ... 88
5.13 Настройка записи в архив .. 91
5.14 Математические каналы ... 94
 5.14.1 Общие сведения о математических каналах .. 94
 5.14.2 Простая функция ... 95
 5.14.3 Таблицы .. 97
 5.14.4 Статистика по каналам .. 101
 5.14.5 Счётчик .. 102
6 ПОДГОТОВКА К РАБОТЕ .. 107
7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ .. 116
8 МЕТОДИКА ПОВЕРКИ .. 118
9 МАРКИРОВАНИЕ, ПЛОМБИРОВАНИЕ, УПАКОВКА ... 133
10 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ .. 134
ПРИЛОЖЕНИЕ А (Перечень нормативных документов) .. 135
Настоящее руководство по эксплуатации (РЭ) предназначено для изучения технических характеристик, устройства, принципа действия и правил эксплуатации регистратора щитового электронного многоканального Ф1771-АД-М.

Настоящая редакция РЭ описывает работу с прибором, на котором установлена версия программного обеспечения (ПО) «RegeSoft 2.0» и выше (см. 4.2). Если на Вашем приборе установлена другая версия ПО, для его обновления следует связаться с сервисной службой предприятия-изготовителя.

Для получения дополнительных инструкций по различным аспектам работы с прибором, не вошедших в текст настоящего руководства, просим обращаться в сервисную службу.

Связаться с сервисной службой АО «ВИБРАТОР» можно по телефону (812) 598-92-59 или электронной почте onr@vibrator.spb.ru
1 ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящем руководстве по эксплуатации применяются определения, обозначения и сокращения, приведенные ниже:

I – сила постоянного тока;
R – сопротивление постоянного тока;
U – напряжение постоянного тока;
БИ – блок измерительный ввода аналоговых сигналов;
БР – блок реле;
БЦАП – блок вывода аналоговых сигналов (блок цифро-аналоговых преобразователей);
ЖКЦД – жидкокристаллический цветной дисплей;
ИП – источник питания;
ИПВП – источник питания внешних преобразователей;
ПК – персональный компьютер
ПЛК – программируемый логический контроллер
ПО – программное обеспечение
СЭ – сенсорный экран
ТП – термопара;
ТС – термопреобразователь сопротивления.
УВЦС – устройство ввода цифровых сигналов;
УИНТ – устройство интерфейсное;
ЦП – центральный процессор;

Перечень нормативных документов, на которые даны ссылки в настоящем РЭ приведён в приложении А.
2 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2.1 При работе с прибором необходимо соблюдать общие правила техники безопасности при работе с электроизмерительными приборами, а также общие правила пожарной безопасности.

2.2 Приборы в части защиты человека от поражения электрическим током относятся к классу I по ГОСТ 12.2.007.0.

2.3 В соответствии с НП-001 приборы «ОИАЭ» исполнения относятся:
 – к классу безопасности 3;
 – по назначению – к элементам нормальной эксплуатации;
 – по влиянию на безопасность – к элементам, важным для безопасности;
 – по характеру выполняемым функциям – к управляющим.
 Пример классификационного обозначения ЗН или ЗНУ.

2.4 Приборы в «ОП» исполнении, предназначенные для эксплуатации на опасных производственных объектах (вне их взрывоопасных зон) должны отвечать требованиям промышленной безопасности ПБ 03-517-02 и ПБ 09-540-03.

2.5 Степень защиты корпусов приборов по ГОСТ 14254 – IP20.

2.6 К работе с приборами допускаются лица, ознакомившиеся с руководством по эксплуатации, а также прошедшие инструктаж по технике безопасности.

2.7 При эксплуатации необходимо заземлить прибор.

2.8 Все подключения к соединителям на задней панели прибора необходимо производить при выключенном питании сети.
3 ОПИСАНИЕ ПРИБОРА И ПРИНЦИПОВ ЕГО РАБОТЫ

3.1 Назначение

Регистратор щитовой электронный многоканальный Ф1771-АД-М (в дальнейшем – прибор) предназначен для применения в различных системах измерений и контроля параметров технологических процессов, сбора, визуализации, регистрации, обработки и оценки данных измерений, сигнализации об их состоянии относительно заданных значений.

Прибор может использоваться вместо бумажных самописцев.

Прибор как автономно, так и в составе систем измерений и управления может применяться в атомной энергетике, нефтяной, газовой, нефтегазоперерабатывающей, химической и нефтехимической промышленности, металлургии и электроэнергетике, а также в других отраслях, где необходимо многоканальное измерение, регистрация и контроль следующих видов сигналов от объекта контроля:

- напряжения постоянного тока (далее – I);
- силы постоянного тока (далее – U);
- сопротивления (далее – R);
- сигналов от термопреобразователей сопротивления (далее – ТС) по ГОСТ 6651;
- сигналов от термопар (далее – ТП) по ГОСТ Р 8.585.

Прибор обеспечивает:

1) измерение напряжения U и силы I постоянного тока в различных диапазонах;
2) измерение сигналов от ТС различного типа, сопротивления R, подключенных по трёх- или четырёхпроводной линии связи;
3) измерение сигналов от ТП различного типа с автоматической компенсацией температуры свободных концов термопар;
4) конфигурирование аналоговых входных каналов на любой из указанных ви-дов входных сигналов и диапазонов измерений;
5) контроль, внешнюю сигнализацию и регулирование при превышении устано-новленных значений измеряемых величин (уставок);
6) регистрацию, отображение и архивирование результатов измерений и сис-темных сообщений;
7) представление результатов измерений в аналоговом и цифровом виде и отображение на ЖКЦД;
8) контроль исправности работы;
9) обмен данными с ЭВМ по интерфейсам RS-232, RS-485, Ethernet.
3.2 Условия эксплуатации.
3.2.1 Нормальные условия применения прибора:
– температура окружающего воздуха (20 ± 5) ºC;
– относительная влажность окружающего воздуха от 30 до 80 %;
– атмосферное давление от 84 до 106,7 кПа или от 630 до 800 мм рт. ст.
3.2.2 Рабочие условия применения:
а) в части воздействия климатических факторов – в соответствии с требованиями группы УХЛ 4.1 по ГОСТ 15150 в условиях атмосферы типа II:
– температура окружающего воздуха (в расширенном диапазоне) от 5 до 50 ºC;
– относительная влажность до 80 % при 25 ºC;
– атмосферное давление от 84 до 106,7 кПа или от 630 до 800 мм рт. ст.
б) в части воздействия механических факторов прибор соответствует:
– по вибрациям и ударам – требованиям группы М38 по ГОСТ 17516.1;
3.2.3 Условия электромагнитной совместимости:
Уровень индустриальных радиопомех, создаваемых приборами, не превышает значений, установленных для оборудования класса А по ГОСТ Р 51318.22.
По устойчивости к помехам приборы отвечают требованиям, предъявляемым к группе исполнения III по ГОСТ 32137, критерий качества функционирования B.
3.3 Состав изделия

Комплект поставки соответствует таблице 1.

Таблица 1 – Комплект поставки

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Кол.</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Регистратор щитовой электронный многоканальный Ф1771-АД (по заказу)</td>
<td>1 шт.</td>
<td></td>
</tr>
<tr>
<td>Розетка B2L 3.5/32 № 174790</td>
<td>_____</td>
<td>для аналоговых входов</td>
</tr>
<tr>
<td>Розетка WAGO 733-105</td>
<td>_____</td>
<td>для аналоговых выходов</td>
</tr>
<tr>
<td>Розетка BLT 5.08/06/180 № 149996</td>
<td>_____</td>
<td>для релейных выходов</td>
</tr>
<tr>
<td>Розетка BLZ 5.00/3 № 157136</td>
<td>1 шт.</td>
<td>для подключения питания</td>
</tr>
<tr>
<td>Вилка SLS 5.08/8/180 № 162715</td>
<td>_____</td>
<td>для питания внешних датчиков</td>
</tr>
<tr>
<td>Вилка DB-9M</td>
<td>2 шт.</td>
<td>для интерфейсных выходов</td>
</tr>
<tr>
<td>Розетка DB-9F</td>
<td>1 шт.</td>
<td>для цифровых входов</td>
</tr>
<tr>
<td>Корпус к разъему Н-9</td>
<td>3 шт.</td>
<td></td>
</tr>
<tr>
<td>Карта памяти</td>
<td>1 шт.</td>
<td></td>
</tr>
<tr>
<td>Картридер</td>
<td>1 шт.</td>
<td></td>
</tr>
<tr>
<td>Плanka 44-2363-00</td>
<td>2 шт.</td>
<td>для крепления в щите</td>
</tr>
<tr>
<td>Винт 44-2363-00</td>
<td>2 шт.</td>
<td></td>
</tr>
<tr>
<td>Руководство по эксплуатации ЗПА.849.011 РЭ или ЗПА.849.011 РЭ/М в зависимости от модификации</td>
<td>1 экз.</td>
<td></td>
</tr>
<tr>
<td>Программа ввода-вывода информации ПВВИ (на CD)</td>
<td>1 шт.</td>
<td></td>
</tr>
<tr>
<td>Руководство оператора 05755097.00004-01-34-01</td>
<td>1 экз.</td>
<td>поставляется на CD ПВВИ</td>
</tr>
<tr>
<td>Паспорт ЗПА.849.011 ПС</td>
<td>1 экз.</td>
<td></td>
</tr>
<tr>
<td>План качества</td>
<td>1 экз.</td>
<td></td>
</tr>
<tr>
<td>Дополнительный комплект ЗИП</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дисплей 6ПА.399.122</td>
<td>_____</td>
<td></td>
</tr>
<tr>
<td>Процессорная плата 5ПА.065.500</td>
<td>_____</td>
<td></td>
</tr>
<tr>
<td>Измерительная плата 5ПА.065.428-00 АЦП 4 канала</td>
<td>_____</td>
<td></td>
</tr>
<tr>
<td>Измерительная плата 5ПА.065.428-01 АЦП 8 каналов (№ 1)</td>
<td>_____</td>
<td></td>
</tr>
<tr>
<td>Измерительная плата 5ПА.065.428-02 АЦП 8 каналов (№ 2)</td>
<td>_____</td>
<td></td>
</tr>
<tr>
<td>Плата питания 5ПА.065.450 – 220 V</td>
<td>_____</td>
<td></td>
</tr>
<tr>
<td>Плата питания 5ПА.065.450-01 – 220 Vс ИПВП</td>
<td>_____</td>
<td></td>
</tr>
</tbody>
</table>

Примечания:
1) Документы, подтверждающие качество комплектующих изделий, потребителю не предоставляется.
2) При поставке приборов на ОИАЭ по 3 классу безопасности по одному экземпляру на партию приборов, по 4 классу безопасности – наличие плана качества в соответствии с условиями договора на поставку.
3.4 Технические характеристики

3.4.1 Прибор имеет исполнения, для которых приняты следующие обозначения:

Ф1771-АД — M — X — X — X — XX — XX — 1

<table>
<thead>
<tr>
<th>M</th>
<th>Модернизированый</th>
</tr>
</thead>
</table>

Входы аналоговые

<table>
<thead>
<tr>
<th>4</th>
<th>4 канала U, I, TC, TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8 каналов U, I, TC, TP</td>
</tr>
<tr>
<td>16</td>
<td>16 каналов U, I, TC, TP</td>
</tr>
</tbody>
</table>

Выходы аналоговые

<table>
<thead>
<tr>
<th>0</th>
<th>нет</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 канала</td>
</tr>
<tr>
<td>2</td>
<td>4 канала</td>
</tr>
</tbody>
</table>

Реле

<table>
<thead>
<tr>
<th>0</th>
<th>нет</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 реле</td>
</tr>
<tr>
<td>2</td>
<td>16 реле</td>
</tr>
</tbody>
</table>

Питание

<table>
<thead>
<tr>
<th>01</th>
<th>~220 В</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>=24 В</td>
</tr>
<tr>
<td>03</td>
<td>~220 В + ИПВП</td>
</tr>
<tr>
<td>04</td>
<td>=24 В + ИПВП</td>
</tr>
</tbody>
</table>

Интерфейс

<table>
<thead>
<tr>
<th>00</th>
<th>RS232, RS485</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>RS232, RS485, Ethernet</td>
</tr>
</tbody>
</table>

Математические каналы

При заказе приборов указывается обозначение исполнения.

3.4.2 Характеристики входных каналов

3.4.2.1 Прибор обеспечивает измерение сигналов:

– напряжения постоянного тока в соответствии с таблицей 2;
– постоянного тока в соответствии с таблицей 3;
– от ТП в соответствии с таблицей 4;
– от ТС в соответствии с таблицей 5;
– сопротивления постоянному току R в соответствии с таблицей 6.
Таблица 2 – Входные сигналы напряжения постоянного тока

<table>
<thead>
<tr>
<th>Диапазон измерений, мВ</th>
<th>Пределы допускаемой основной приведенной погрешности, %</th>
<th>Дискретность, мВ</th>
<th>Входное сопротивление, не менее</th>
</tr>
</thead>
<tbody>
<tr>
<td>от – 200 до + 200</td>
<td>± 0,2</td>
<td>0,01</td>
<td>100 кОм</td>
</tr>
<tr>
<td>от – 2000 до + 2000</td>
<td>± 0,1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>от – 10000 до + 10000</td>
<td>± 0,1</td>
<td>1</td>
<td>1 МОм</td>
</tr>
</tbody>
</table>

Таблица 3 – Входные сигналы постоянного тока

<table>
<thead>
<tr>
<th>Диапазон измерений, мА</th>
<th>Пределы допускаемой основной приведенной погрешности, %</th>
<th>Дискретность, мкА</th>
</tr>
</thead>
<tbody>
<tr>
<td>от – 20 до + 20</td>
<td>± 0,25</td>
<td>1</td>
</tr>
</tbody>
</table>

При эксплуатации обеспечивается установка других значений диапазона измерений, при этом для конечного значения диапазона измерения до 5 мА предел допускаемой основной приведенной погрешности равен ± 0,25%, для конечного значения диапазона измерений до 3 мА - равен ± 0,5%.

Таблица 4 – Сигналы ТП

<table>
<thead>
<tr>
<th>Тип ТП</th>
<th>Диапазон измерений, °С</th>
<th>Пределы допускаемой основной приведенной погрешности, %</th>
<th>Дискретность, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>от – 100 до + 1300</td>
<td>± 0,5</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>от – 100 до + 800</td>
<td>± 0,5</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Примечание: при эксплуатации обеспечивается установка верхней границы диапазона измерений не менее 400 °С.
Таблица 5 – Сигналы ТС

<table>
<thead>
<tr>
<th>Тип ТС</th>
<th>Диапазон измерений, °С</th>
<th>Пределы допускаемой основной приведенной погрешности, %</th>
<th>Дискретность, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td>50М</td>
<td>от – 50 до +200</td>
<td>±0,25</td>
<td>0,1</td>
</tr>
<tr>
<td>53М</td>
<td>от – 50 до +180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50П</td>
<td>от – 100 до +600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46П</td>
<td>от – 100 до +600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100П</td>
<td>от – 200 до +600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечания: 1) при эксплуатации обеспечивается применение ТС типа 50М с номинальным значением температурного коэффициента преобразователя α (по ГОСТ 6651), равным 0,00428 или 0,00426 °С⁻¹;
2) при эксплуатации обеспечивается применение ТС типов 50П и 100П с номинальным значением температурного коэффициента преобразователя α (по ГОСТ 6651), равным 0,00391 или 0,00385 °С⁻¹.
3) при эксплуатации обеспечивается установка других значений диапазона измерений, при этом для конечного значения диапазона измерений до 100 °С пределы допускаемой основной приведенной погрешности равны ± 0,5 %, для конечного значения диапазона измерений до 50 °С – равен ± 1 %.
Таблица 6 – Входные сигналы сопротивления постоянному току

<table>
<thead>
<tr>
<th>Диапазон измерений, Ом</th>
<th>Пределы допускаемой основной приведенной погрешности, %</th>
<th>Дискретность, Ом</th>
</tr>
</thead>
<tbody>
<tr>
<td>от 0 до 100</td>
<td>± 0,25</td>
<td>0,01</td>
</tr>
<tr>
<td>от 0 до 400</td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>от 0 до 2000</td>
<td></td>
<td>0,1</td>
</tr>
</tbody>
</table>

Прибор обеспечивает установку и измерение на любом из аналоговых каналов входных сигналов в соответствии с 3.4.1, в диапазонах измерения в соответствии с таблицами 2 – 6.

К результату измерения по каналу может быть применена математическая обработка:

– извлечение квадратного корня для сигналов тока и напряжения;
– пересчёт в градусы Кельвина для сигналов от датчиков температуры.
3.4.2.2 Метрологические характеристики входных каналов.
1) Пределы допускаемой основной приведенной погрешности измерений входных сигналов в процентах от конечного диапазона измерений равны значениям приведенным в таблицах 2 - 6.
2) Пределы допускаемой дополнительной погрешности, вызванной изменением температуры окружающего воздуха от нормальной до любой в пределах от 5 до 50 °C на каждые 10 °C, равны половине значений, приведённых в таблицах 2 – 6.
3) Входные сопротивления при измерении постоянного напряжения приведены в таблице 2.
4) Падение напряжения на входе каналов при измерении постоянного тока, соответствующее конечному значению входного сигнала, быть не более 1 В.
5) Значение тока возбуждения при измерении от ТС не более 0,3 мА.
6) Автоматическая компенсация температуры свободных концов при измерении от ТП с возможностью её отключения.
7) Входы каналов дифференциальные и обеспечивают гальваническую развязку друг от друга, от цепей питания и корпуса прибора.
8) Коэффициент подавление помех общего и нормального вида не менее 60 дБ.

3.4.2.3 Гальваническая развязка и перегрузка по входу
Входы каналов дифференциальные и обеспечивают гальваническую развязку от цепей питания и корпуса прибора.
Гальваническая развязка между каналами – 500 В.
ВНИМАНИЕ Предельная величина, подаваемых на входы каналов:
– напряжений постоянных токов – ± 25 В;
– постоянных токов – ± 40 мА.

3.4.2.4 Требования к линиям связи с датчиками
Общее сопротивление двухпроводной линии для подключения ТП – не более 100 Ом.
Сопротивление каждой из линий для подключения ТС – не более 15 Ом.
3.4.2.5 Время измерений и обработки входных сигналов

Время измерений аналогового сигнала на каждом канале для всех диапазонов напряжений, тока и термопар не более 100 мс, для сопротивлений и термосопротивлений не более 500 мс, при этом измерения производятся параллельно.

Время реакции (срабатывания реле), при скачкообразном изменении входного сигнала от нуля до максимального значения:

- не более 100 мс для сигналов постоянного тока и напряжения и ТП;
- не более 500 мс для сигналов ТС и R.

3.4.3 Характеристики цифровых (дискретных) входов

Прибор обеспечивает ввод до 8 цифровых (дискретных) сигналов.

Переход с уровня «1» (от 2,4 до 5 В относительно общей точки) по каждому из входов к уровню «0» (от 0 до 0,8 В) отображается в журнале (см. 4.5) как установка состояния «Вкл» по соответствующему входу; обратный переход отображается как установка состояния «Откл».

Состояние цифровых (дискретных) входов, в зависимости от настроек прибора, может использоваться для решения следующих задач:

- выступать в качестве аргумента для канала прибора;
- выступать в качестве одного из аргументов события;
- фиксироваться в журнале прибора.

Цифровые входы гальванически развязаны от цепей питания и корпуса прибора.

3.4.4 Математические каналы

Математические каналы позволяют производить вычисления целевых параметров по заданной пользователем зависимости от нескольких аргументов. Результаты вычислений по каждому математическому каналу отображаются на экране прибора и записываются в архив, как и по обычному измерительному каналу.

Пользователь может задать до 16 математических каналов со следующими возможностями:

- построитель выражений – позволяет пользователю осуществлять произвольное задание вычисляемых функций. Пользователь сам вводит в прибор необходимое ему математическое выражение, используя в качестве аргументов
измерительные каналы прибора и заданные константы; операторы +, -, *, /, ^ (возведение в степень) и функции exp, ln, lg, sin, cos, tg, кв. корень и заданные пользователем функции в табличном виде;

– задание зависимостей для преобразования одного параметра в другой в табличном виде – позволяет задавать функции, которые не могут быть представлены в виде математического выражения. Возможен ввод до 5 таблиц, общее количество строк во всех таблицах – до 1024. Возможен импорт таблиц из файлов «Microsoft Excel»;

– вычисление суммы значений, среднего значения, минимума, максимума и разницы между максимумом и минимумом за заданный пользователем интервал времени по выбранному каналу или группе каналов;

– счетчик событий (срабатываний установок, цифровых входов и т.д.) за заданный интервал времени.

3.4.5 Аналоговые выходы

1) Число выходных аналоговых каналов в соответствии с 4.4.1.

2) По каналам выполняется цифро-аналоговое преобразование в сигналы постоянного тока в диапазонах: от 0 до 5, от 0 до 20, от 4 до 20 мА.

3) Пределы допускаемой основной приведенной погрешности изменения выходных аналоговых сигналов равны ± 0,25 % от конечного значения диапазона изменения выходного сигнала.

4) Пределы допускаемой дополнительной погрешности, вызванной изменением температуры окружающего воздуха от нормальной до любой в пределах от 5 до 50 ºС на каждые 10 ºС, равны ± 0,125 %.

5) Допустимое сопротивление нагрузки не более:

– для диапазона от 0 до 5 мА 2500 Ом;

– для диапазонов от 0 до 20 и от 4 до 20 мА 500 Ом.

6) Выходы каналов обеспечивают гальваническую развязку между собой, от цепей питания и корпуса.
3.4.6 Сигнализация и регулирование
3.4.6.1 Уставки
Число уставок сигнализации / регулирования, которые устанавливаются при конфигурировании режимов работы на каждом входном канале – до шести.
Диапазон и дискретность установки уставок соответствуют диапазонам измерений по каналам и дискретности см. таблицы 2 – 5.
Выдача сигналов по каждой из уставок может быть установлена:
– на снижение или превышение результата измерений относительно уставки;
– с гистерезисом на снятие сигнала при возврате результата измерений в норму.
3.4.6.2 События
Программой прибора предусмотрена возможность настройки 32 событий.
Событие – это логическая функция, принимающая значение «1» при выполнении нескольких условий, заданных пользователем. Задание событий позволяют пользователю осуществлять гибкие логические взаимосвязи для контроля параметров и управления процессами.
Аргументами для событий являются дискретные сигналы:
– состояние уставок;
– состояние цифровых входов;
– заданные пользователем периодические функции времени;
– уровень заполнения архива измерений;
– состояние других событий.
Эти аргументы объединяются пользователем при помощи логических операций «и», «или», «нор» (исключающее или), «не».
По срабатыванию события происходит соответствующая запись в журнал (см. 5.5), может активироваться заданное пользователем реле, происходить более частая запись данных в архив прибора и на экране прибора может отображаться окно с сообщением для оператора и предложением квитировать это сообщение.
3.4.6.3 Реле
Число реле сигнализации / регулирования до 16 (в соответствии с 4.1.1).

Контакты реле выводятся на внешние соединители прибора.

Характеристики реле:
- максимальный коммутируемый ток:
- 2,0 А при напряжении 250 В переменного тока;
- 2,0 А при напряжении 50 В постоянного тока;
- 0,3 А при напряжении 250 В постоянного тока;
- время переключения 10 мс;
- контакты реле — переключающие.

3.4.7 Визуализация результатов измерений и ввод команд оператором
3.4.7.1 Для отображения результатов измерений применён жидкокристаллический цветной дисплей (ЖКЦД) с размером по диагонали 10,4" (211,2x158,4 мм). Решение экрана 640x480 точек. Угол обзора в горизонтальной плоскости ± 650.

3.4.7.2 Прибор обеспечивает отображение результатов измерения в виде:
1) Графика для группы каналов;
2) Графика для одного канала;
3) Вертикальных столбиковых диаграмм для группы каналов;
4) Цифровых показаний по всем каналам.

Цикл отображения на ЖКЦД (временной интервал вывода каждой следующей точки на экран) задаётся пользователем при настройке из следующего ряда значений: 100 мс, 1с, 2 с, 5 с, 10 с, 30 с, 1 мин, 2 мин, 5 мин.

3.4.7.3 Ввод команд оператором осуществляется посредством сенсорного экрана (СЭ). Размеры элементов операторского интерфейса позволяют легко осуществлять все необходимые операции. При конфигурировании прибора рекомендуется использование стиллуса (палочка с пластмассовым наконечником) или аналогичного предмета.
3.4.8 Архивирование результатов измерений и журнал событий
3.4.8.1 Прибор обеспечивает запись и хранение измерительной информации по всем каналам в энергонезависимой архивной памяти.

Объём архивной памяти – 20 000 000 измерений (при скорости записи 1 сек.).

В архивной энергонезависимой памяти записываются и хранятся результаты измерений по аналоговым каналам и результаты вычисления математических каналов. Данные архива представляют собой набор отдельных записей (фреймов). Каждая новая запись создается каждые сутки в 00:00:00, а также при изменении настроек прибора и при его включении.

При полном заполнении архива происходит удаление самой старой записи (фрейма). Таким образом, запись данных в архив производится циклически.

3.4.8.2 Период записи в архив задаётся пользователем при настройке из следующего ряда значений: 100 мс, 1 с, 2 с, 5 с, 10 с, 30 с, 1 мин, 2 мин, 5 мин общий для всех каналов прибора.

3.4.8.3 Использование Событий (см. 4.4.6.2) позволяет установить условия, при которых производится запись в архив, или изменить период записи.

3.4.8.4 Прибор обеспечивает запись информации о дискретных событиях в журнале. Обеспечивается фиксация следующих событий:

– превышение уставок;
– изменение состояния реле;
– включение прибора;
– изменение настроек;
– копирование архива;
– изменение состояния цифрового входа;
– события.

Объём журнала – 25 000 записей. При полном заполнении журнала происходит удаление самой старой записи. Таким образом, запись данных в журнал производится циклически.
3.4.9 Связь с устройствами верхнего уровня

3.4.9.1 Обмен данными через Flash накопители

В состав прибора входит USB и MMC порты, к ним подключаются USB Flash и MMC Flash накопители соответственно, это позволяет:

– переписывать на Flash накопитель архивную информацию, а также записывать файл конфигурации установленный в регистраторе;

– переписывать с Flash накопителя файл конфигурации и устанавливать его в регистраторе, производить обновление ПО прибора.

ВНИМАНИЕ USB порт в данной версии ПО не задействован.

В течение времени, необходимого для копирования архива на Flash накопитель, прибор выполняет все функции по измерению, сигнализации и регулированию, а так же записи новых данных в архив.

Архив прибора сохраняется в файл с расширением .RGA. Данные в файле закодированы и не могут быть прочитаны без использования специальной программы RegeDVI (входит в комплект поставки). Кодирование данных исключает возможность фальсификации архива измерений.

3.4.9.2 Связь по интерфейсам

Прибор обеспечивает следующую работу под управлением ПК или ПЛК системы управления по интерфейсам RS-232, RS-485 и Ethernet.

ВНИМАНИЕ Прибор может осуществлять обмен данными только по одному из имеющихся интерфейсов.

Скорость передачи по последовательному интерфейсу может быть установлена от 1,2 кбит/с до 115,2 кбит/с.

Количество сокетов при подключении по Ethernet – 4.

Обмен данными по интерфейсу позволяет решать следующие задачи:

– передачу результатов измерений, состояния дискретных входов и выходов, событий в режиме реального времени;

– копирование архива измерений;

– управление аналоговыми выходами и реле прибора;

– вывод файла конфигурации, установленного в регистраторе;

– ввод файла конфигурации и установка его в регистраторе;

– синхронизация часов прибора;

– обновление ПО прибора.
3.4.10 Питание

3.4.10.1 Питание в зависимости от исполнения в соответствии с 3.4.1 осуществляется:

1) От сети переменного тока напряжением \((220^{10\%}_{-15\%})\) В, частотой \((50^{3}_{-2.5})\) Гц, при этом регистратор сохраняет работоспособность при изменении напряжения питания в пределах от 85 до 265 В и частоты в пределах от 47 до 63 Гц;

2) От сети постоянного тока напряжением 24 В \(\pm\) 15 %, при этом регистратор сохраняет работоспособность при изменении напряжения питания в пределах от 18 до 36 В.

3.4.10.2 Прибор обеспечивает питание до 4 внешних преобразователей не стабилизированным напряжением в диапазоне от 22 В (при \(I_{\text{max}}=35\) мА) до 26 В (холостой ход). Источники питания внешних преобразователей (ИПВП) гальванически развязаны друг от друга и от питания прибора. ИПВП защищены от короткого замыкания.

3.4.10.3 Пусковой ток для прибора с напряжением питания \(\sim220\) В не более 8,5 А, продолжительность пускового импульса не более 6 мс.

3.4.10.4 Потребляемая мощность не более 35 ВА.

3.4.11 Изоляция электрических цепей

3.4.11.1 Испытательное напряжение

1) Изоляция электрических цепей питания (для исполнений прибора с питанием от сети переменного тока 220 В, 50 Гц) и выходных цепей контактов реле относительно корпуса прибора при нормальных условиях по 4.2.1 выдерживает в течение 1 мин действие испытательного напряжения переменного тока, среднеквадратическое значение которого равно 1,5 кВ, частотой \((50^{3}_{-2.5})\) Гц.

2) Изоляция аналоговых входов относительно корпуса (защитного заземления) или друг друга (в любом сочетании), выдерживает в течение 1 мин действие испытательного напряжения 500 В практически синусоидальной формы частотой \((50 \pm 0,5)\) Гц, при температуре окружающего воздуха \((20 \pm 5)\) °C и относительной влажности от 30 до 80 %.
3.4.11.2 Электрическое сопротивление изоляции

1) токоведущих цепей относительно корпуса прибора для цепей питания и сигнализации не менее:
 – 40 МОм, при температуре окружающего воздуха \((20 \pm 5)\) °С и относительной влажности от 30 до 80 %;
 – 20 МОм, при температуре окружающего воздуха 50 °С и относительной влажности от 30 до 80 %.

2) токоведущих цепей относительно корпуса прибора для аналоговых входов:
 – 40 МОм, при температуре окружающего воздуха \((20 \pm 5)\) °С и относительной влажности от 30 до 80 %;
 – 5 МОм, при температуре окружающего воздуха 50 °С и относительной влажности от 30 до 80 %.
3.4.12 Габаритные размеры и масса прибора

3.4.12.1 Габаритные размер: 255 х 205 х 165 мм.

Прибор выполнен в корпусе, который устанавливается в щит и фиксируется с помощью 2-х специальных креплений, поставляемых в комплекте поставки.

Габаритный чертёж прибора и вырез в щите приведён на рисунке 1.

3.4.12.2 Масса прибора не более 3,5 кг.

Рисунок 1 – Габаритный чертёж прибора и вырез в щите
3.5 Устройство и работа.
3.5.1 Функциональная схема.

Функциональная схема приведена на рисунке 2 и включает в себя следующие основные узлы:

1) Центральный процессор ЦП, осуществляющий управление всеми блоками регистратора.

2) Измерительные блоки ввода аналоговых сигналов БИ1 и БИ2 на 4 или 8 входных каналов каждый, обеспечивающие аналого-цифровое преобразование сигналов в соответствии с 3.1.1 и передачу цифровых данных в ЦП. Блоки обеспечивают гальваническую развязку входных цепей от цепей питания и корпуса.

3) Блок вывода аналоговых сигналов БЦАП, обеспечивающий цифроаналоговое преобразование данных от ЦП в сигналы постоянного тока по двум или четырем каналам в соответствии с 3.4.1. Блок обеспечивает также гальваническую развязку выходных цепей от цепей питания и корпуса.

4) ЖКЦД обеспечивающий, отображение информации.

5) Устройство интерфейсное УИНТ, обеспечивающее связь с компьютером по интерфейсам RS-232, RS-485, Ethernet.

6) Устройство ввода цифровых сигналов УВЦС, обеспечивающий ввод внешних цифровых сигналов. Блок обеспечивает также гальваническую развязку...
7) Блок реле БР, обеспечивающий сигнализацию / регулирование на объекте контроля.

8) USB, MMC модуль. К MMC порту подключается соответствующий Flash накопитель, обеспечивающий перенос информации из прибора в ПК.

9) Сенсорный экран (СЭ), обеспечивающий ручное управление регистратором.

10) Источник питания ИП, обеспечивающий питание всех узлов прибора постоянными напряжениями + 5 В и + 12 В, а также питание внешних преобразователей в соответствии с 3.4.1.

3.6 Разграничение прав доступа

Программа прибора обеспечивает следующие уровни доступа:

1) Свободный доступ. Просмотр результатов измерений и настроек прибора (в режиме «информация о приборе», см. 5.2)

2) Интерфейс оператора. Защищен паролем оператора. Позволяет производить просмотр и копирование на съемные носители архива измерений и журнала событий.

3) Конфигурирование прибора. Защищен паролем на настройку. Позволяет менять параметры конфигурации прибора и производить настройку (калибровку) каналов измерения. Позволяет копировать на Flash-карту файл конфигурации прибора и производить запись и установку конфигурации с карты на прибор.

4) Обновление ПО. Защищён инженерным паролем. Позволяет производить обновление ПО прибора, восстановить «настройки по умолчанию».
4 ИНТЕРФЕЙС ОПЕРАТОРА

4.1 Средства навигации и ввода символов.

В верхней части экрана прибора расположена панель, представленная на рисунке 3.

На панели слева направо расположены кнопки:
- «Меню» – позволяет открыть главное меню прибора;
- «Архив» – позволяет просматривать архив измерений;
- «Журнал событий» – позволяет просматривать журнал событий и скопировать его на flash-карту;
- «Копировать архив» – позволяет выбрать и скопировать на flash-карту фрагменты архива измерений.

Для доступа ко всем функциям, кроме вызова главного меню, требуется ввести пароль оператора. Для ввода паролей используется стандартное окно ввода символов (см. 6.1.1).

Главное меню прибора вызывается нажатием кнопки «меню» и позволяет получить доступ к различным функциям прибора (см. рисунок 4).
Кнопка «Настройки прибора» позволяет производить конфигурирование прибора после ввода пароля на настройку.

Кнопка «Информация о приборе» позволяет просмотреть все параметры конфигурации прибора в виде сводных таблиц, без возможности редактирования. Не требует ввода пароля.

Остальные кнопки главного меню дублируют аналогичные кнопки на панели прибора.

4.2 Информация о приборе

Раздел меню «Информация о приборе» позволяет просмотреть все параметры конфигурации прибора в виде сводных таблиц, без возможности редактирования. Не требует ввода пароля. Для входа необходимо выбрать «Меню» ► «Информация о приборе».

Раздел представляет собой 6 страниц, которые пролистываются с помощью кнопок в правом нижнем углу экрана.

На странице 1 раздела «Информация о приборе», (см. рисунок 5) показаны общие настройки прибора и настройки интерфейса.
В общих настройках прибора указаны:
– версия программного обеспечения (все приборы, выпущенные после декабря 2006 г. имеют версию 2.0, точный номер версии ПО – 5 цифр на зелёном фоне в правом верхнем углу экрана непосредственно под часами реального времени);
– серийный номер прибора, присвоенный заводом-изготовителем (может быть передан по интерфейсу, записывается в файлы архива и конфигурации);
– аппаратные характеристики прибора, заданные на заводе-изготовителе;
– дата и характер последней калибровки прибора.
На странице 2 раздела «Информация о приборе» (см. рисунок 6) показаны настройки экрана, архива и аналоговых выходов прибора.

Рисунок 6 – Информация о приборе страница 2: настройки экрана, архива и аналоговых выходов

Для аналоговых выходов указан диапазон выходного сигнала и канал прибора, пропорционально которому формируется выходной сигнал.
На странице 3 раздела «Информация о приборе» (см. рисунок 7) показаны настройки аналоговых входов прибора.

ВНИМАНИЕ – настройки шкал Математических каналов в данной версии ПО недоступны в разделе «Информация о приборе».
На странице 4 раздела «Информация о приборе» (см. рисунок 8) показаны настройки каналов прибора.

Рисунок 8 – Информация о приборе страница 4: настройки уставок

<table>
<thead>
<tr>
<th>Канал</th>
<th>Тип</th>
<th>Градуировка шкалы</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>-2000.0..2000.0 мВ</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>-10000..10000 мВ</td>
</tr>
<tr>
<td>4</td>
<td>A4</td>
<td>-20.000..20.000 мА</td>
</tr>
<tr>
<td>5</td>
<td>A5</td>
<td>0.000..20.000 мА</td>
</tr>
<tr>
<td>6</td>
<td>A6</td>
<td>4.000..20.000 мА</td>
</tr>
<tr>
<td>7</td>
<td>A7</td>
<td>0.0..2000.0 Ом</td>
</tr>
<tr>
<td>8</td>
<td>A8</td>
<td>0.0..400.0 Ом</td>
</tr>
<tr>
<td>9</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
<tr>
<td>10</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
<tr>
<td>11</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
<tr>
<td>12</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
<tr>
<td>13</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
<tr>
<td>13</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
<tr>
<td>15</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
<tr>
<td>16</td>
<td>A1</td>
<td>-200.00..200.00 мВ</td>
</tr>
</tbody>
</table>
На странице 5 раздела «Информация о приборе» (см. рисунок 9) показаны настройки каналов прибора.

Рисунок 9 – Информация о приборе страница 4: настройки уставок

<table>
<thead>
<tr>
<th>Канал 2</th>
<th>Уставка</th>
<th>Тип</th>
<th>Гистерезис</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td><</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Канал 2</th>
<th>Уставка</th>
<th>Тип</th>
<th>Гистерезис</th>
</tr>
</thead>
<tbody>
<tr>
<td>123.0</td>
<td>></td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Канал 3</th>
<th>Уставка</th>
<th>Тип</th>
<th>Гистерезис</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td><</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Канал 3</th>
<th>Уставка</th>
<th>Тип</th>
<th>Гистерезис</th>
</tr>
</thead>
<tbody>
<tr>
<td>12000</td>
<td><</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Канал 4</th>
<th>Уставка</th>
<th>Тип</th>
<th>Гистерезис</th>
</tr>
</thead>
<tbody>
<tr>
<td>14000</td>
<td><</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Канал 4</th>
<th>Уставка</th>
<th>Тип</th>
<th>Гистерезис</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.345</td>
<td>></td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Канал 4</th>
<th>Уставка</th>
<th>Тип</th>
<th>Гистерезис</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.543</td>
<td><</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>
На странице 6 раздела «Информация о приборе» (см. рисунок 10) показаны настройки групп, в которые объединены каналы прибора.

Рисунок 10 – Информация о приборе страница 6: настройки групп
На странице 7 раздела «Информация о приборе» (см. рисунок 11) показаны настройки реле прибора. Если прибор не имеет реле, страница недоступна.

Рисунок 11 – Информация о приборе страница 6: настройки реле

4.3 Режимы визуализации результатов измерений
В приборе предусмотрено четыре основных режима представления информации:
– график для группы каналов (см. рисунки 12, 13);
– столбиковые диаграммы для группы каналов (см. рисунок 15);
– график для одного канала (см. рисунок 16);
– цифровые показания для всех каналов (см. рисунок 17).
4.3.1 График для группы каналов

Режим «График» отображает значения группы каналов в виде кривых разного цвета и цифровых значений.

Область отображения графиков имеет два режима:

– «Вертикальный график» – оси X графика соответствует шкала измерений по каналам, оси Y – время измерений (см. рисунок 12);

Для изменения режима отображения нужно нажать на любую точку в области построения графика.

Рисунок 12 – Режим «Вертикальный график для группы каналов»
Рисунок 13 – Режим «Горизонтальный график для группы каналов»

Для всех каналов группы используется общая шкала, отградуированная в процентах от диапазона измерений каждого канала. Это позволяет одновременно отображать каналы, имеющие различные диапазоны измерения.

Программа прибора позволяет градуировать общую шкалу в единицах измеряемой величины, если все каналы в пределах группы имеют одинаковые шкалы (см. 6.11.5).

На шкале изображены перья, положение которых соответствует значениям каналов в момент нанесения на график последней точки. Цвет и номер пера соответствуют цвету и номеру канала в группе.

Дискретность оси времени изменяется в зависимости от выбранного пользователем цикла отображения (см. 6.4.1).
Справа от графиков расположены окна с цифровыми показаниями измеряемых каналов, (см. рисунок 14).

Цифровые показания могут принимать значения в диапазонах:
- для входных аналоговых каналов от «−99999» до «+99999»;
- для математических каналов от «−2000» до «+20000».

Над значениями отображаются единицы измерения, назначаемые пользователем при настройке прибора. В верхней части окна отображается название канала и номер пера в текущей группе.

Если для канала назначены уставки, то они отображаются в правой части окна в виде квадратов серого (уставка в состоянии «норма») или красного (уставка в состоянии «не норма») цвета. Если уставки отсутствуют или находятся в состоянии «норма», цвет шрифта цифрового значения канала – зеленый. Если любая уставка канала находится в состоянии «не норма», цвет шрифта цифрового значения становится красным.

Значения в окнах с цифровыми показаниями обновляются ежесекундно, независимо от выбранного цикла отображения.

4.3.2 Столбиковые диаграммы для группы каналов.
Режим «Столбиковая диаграмма» отображает текущие значения группы каналов в виде столбиковых диаграмм и цифровых значений каналов, рисунок 15.

Каждое окно содержит:
- название канала;
- единицы измерения;
– цифровое показание каждого канала;
– столбиковую диаграмму – шкала отградуирована в соответствии с настройкой шкалы конкретного канала;
– значение уставок (если в группе находится не более 5 каналов).

Рисунок 15 – Режим «Столбиковая диаграмма»

Если для канала назначены уставки, то они отображаются справа от шкалы диаграммы в виде треугольников зеленого цвета. При превышении уставки цвет меняется на красный.

Ориентация вершины треугольника позволяет определить тип уставки:
– Вершина направлена вверх – соответствует типу «больше»
– Вершина направлена вниз – соответствует типу «меньше»
Если уставки отсутствуют или находятся в состоянии «норма», цвет шрифта цифрового показания канала и диаграммы – зеленый. Если любая уставка канала находится в состоянии «не норма», цвет шрифта цифрового показания и диаграммы становится красным.

4.3.3 Один канал

Режим «Один канал» отображает значение выбранного канала в виде графика и столбиковой диаграммы с цифровым значением, см. рисунок 16.

Рисунок 16 – Режим «Один канал»

Столбиковая диаграмма аналогична диаграмме в режиме «Столбиковая диаграмма».
Область отображения графиков имеет два режима:
- «Вертикальный график» – оси X графика соответствует шкала измерений по каналам, оси Y – время измерений (см. рисунки 16,12);
- «Горизонтальный график» – ось X соответствует время измерений, ось Y – шкала измерений (см. рисунок 13)

Для изменения режима отображения нужно нажать на любую точку в области построения графика.

Шкала отградуирована в соответствии с настройками отображаемого канала (см. 5.6).

Дискретность оси времени изменяется в зависимости от выбранного пользователем цикла отображения (см. 5.4.1).

На шкале изображено перо, положение которого соответствует значению канала в момент нанесения на график последней точки.

Пунктирными линиями синего цвета в области построения графика обозначено положение уставок. Область значений, при которых уставка переходит в состояние «не норма», выделяется в области построения графика отмывкой серого цвета.

4.3.4 Все каналы

Режим «Все каналы» отображает в цифровом виде значения всех каналов (см. рисунок 17).

Область отображения результатов измерений состоит из окон с цифровым отсчетом, по числу каналов в приборе (4, 8, 16, 24).

Каждое окно содержит:
- название канала;
- единицы измерения;
- значение канала;
- количество и состояние уставок канала.

Если уставки отсутствуют или находятся в состоянии «норма», цвет шрифта цифрового значения канала – зеленый. Если любая уставка канала находится в состоянии «не норма», цвет шрифта цифрового значения становится красным.
В нижней части экрана расположены индикаторы состояния реле и цифровых входов. Индикаторы представляют собой ряд пронумерованных квадратов серого (реле разомкнуто) или красного (реле замкнуто) цвета.

В режиме «Все каналы» элемент 8-ми и 4-х канального прибора, у 16-ти канального прибора элемент позволяет переключаться между входными каналами и математическими каналами (см. рисунок 18).

4.3.5 Смена режима визуализации результатов измерений
Для выбора режима отображения и группы отображаемых каналов измерения используются два элемента управления, расположенных в нижней части экрана (см. рисунок 18):
– слева – для выбора режима представления информации
– справа – для выбора отображаемой информации (группа, канал); в режиме «все каналы» элемент отсутствует у 8-ми и 4-х канального прибора, у 16-ти канального прибора элемент позволяет переключаться между входными каналами и математическими каналами (см. рисунок 18).
Элементы управления представляют собой комбинацию из текстового поля и двух кнопок – «вправо» и «влево». Нажатие кнопок < или > позволяет последовательно изменять режим представления информации (номер группы, номер канала или режим отображение) в прямом или обратном порядке. Текстовое поле отображает текущее выбранное значение. Нажатие на текстовое поле позволяет выбрать значение из открывшегося списка (выбор режима отображения, группы или канала).

При включении прибора, в режиме «графики» и «гистограмма» отображаются каналы первой группы, а в режиме «один канал» – канал номер один. Для перехода от одного вида представления данных к другому, помимо элемента управления в нижней части экрана (см. рисунок 19), можно использовать следующие способы:
- в режиме «Графики» или «Все каналы» нажмите на окно цифрового представления данных необходимого канала, после нажатия прибор переключится в режим «Один канал».
- в режиме «Один канал», при нажатии на диаграмму, прибор переходит в режим «График», отображая последнюю группу, в которую включен данный канал. Если канал не включен ни в одну группу, то прибор переходит в режим отображения «Все каналы».

4.4 Архив измерений

4.4.1 Для просмотра данных записанных в энергонезависимую память прибора нужно выбрать в главном меню пункт «Просмотр архива» или соответствующую кнопку в верхней части экрана прибора.
Просмотр архива имеет три режима:

1) «Значения» – просмотр архива измерений в виде графиков и цифровых значений.

2) «Статистика» – просмотр результатов статистического анализа данных архива.

3) «Журнал» – просмотр журнала событий прибора, представленного в графическом виде аналогично архиву измерений.

Для изменения режима нужно выбрать соответствующее значение из списка в правой части экрана (см. рисунок 18).

4.4.2 Режим «Значения»

В режиме «Значения» данные архива представлены в виде графика и цифровых значений, рисунок 18.

Рисунок 19 – Архив прибора. Режим «Значения»
Одновременно можно просматривать данные не более чем по 6 каналам.

Существует два режима пролистывания каналов при просмотре:

- «По группам» – осуществляется просмотр каналов включенных в пользовательские группы. Для смены отображаемой группы каналов нужно нажать кнопки «<» или «>», расположенные в правом нижнем углу экрана.

- «Последовательно» – осуществляется просмотр данных по первым шести каналам. Нажатие кнопки «>» позволяет просмотреть данные по следующим шести каналам.

Для изменения режима выбора каналов для просмотра необходимо установить или снять флажок «по группам».

- На оси Y графика располагается общая шкала;
- На оси X графика отображается время измерений.

Для всех каналов группы используется общая шкала, отградуированная в процентах от диапазона измерений каждого из каналов. Это позволяет одновременно отображать каналы, имеющие различные диапазоны и единицы измерения.

Цвет графиков соответствует цвету названий каналов.

В центре графика располагается курсор – две параллельные линии, пересекающие перседину поле графика. Справа от графика расположены значения каналов находящихся между линиями курсора.

Для поиска нужных данных в архиве имеются кнопки в нижней части экрана и кнопки для поиска по дате, времени и номеру записи.

4.4.3 Режим «Статистика»

Это режим просмотра архива позволяет производить статистическую обработку данных архива в заданном оператором интервале времени.

Для перехода в режим «статистика» необходимо его выбрать из всплывающего списка, см. рисунок 20.
Для задания интервала времени, для которого будут производиться вычисления возможны два способа:

а) Стандартный интервал - из списка «за текущий» можно выбрать периоды времени, при этом их значения отображаются в полях «С «_____»» и «ПО «_____»».

Возможен выбор следующих значений:

- «Час» – период времени от начала текущего часа до времени перехода в режим просмотра архива;
- «День» – период времени от начала текущих суток до времени перехода в режим просмотра архива;
- «Месяц» – период времени от начала текущего месяца до времени перехода в режим просмотра архива;
- «Год» – период времени от начала текущего года до времени перехода в режим просмотра архива.
6) Произвольный интервал – значения полей «С «___»» и «ПО «___»» можно редактировать вручную, для этого необходимо нажать на поле времени или даты и ввести новое значение с помощью окна ввода символов.

Для начала расчета необходимо нажать кнопку «Выполнить». Вычисление производится в фоновом режиме, возможен переход к другим пунктам меню или просмотру результатов измерений. Если необходимо прервать вычисление нажмите кнопку «Отмена».

Результаты вычислений представлены в виде таблицы со следующими полями:
- № канала;
- название канала, присвоенное при настройке прибора;
- среднее арифметическое за выбранный период времени;
- сумма за выбранный период времени;
- минимальное значение за выбранный период времени;
- максимальное значение за выбранный период времени.

В верхней части экрана указаны границы выбранного периода времени. Ниже, приводится число обработанных записей.

Если в пределах интервала времени, в котором производятся вычисления, имеются участки, для которых отсутствуют данные, то в правом верхнем углу экрана появляется красная предупредительная надпись «Данные не полные!».

Переход по записям таблицы осуществляется при помощи кнопок «< », « > » в правой нижней части экрана. (Для просмотра значений по каналам с 17 по 24, при наличии в приборе математических каналов).

Для возврата в режим просмотра архива в виде графиков необходимо выбрать пункт «Значения» из всплывающего списка.

4.4.4 Режим «Журнал»

Режим «Журнал» позволяет представить дискретные события в виде пунктирных линий разного цвета, пересекающих область построения графиков архивных данных (см. рисунок 21). Точка пересечения пунктирной линии с осью Х соответствует моменту времени, для которого зафиксировано данное событие.
Цвет стрелки в основании пунктирной линии и самой линии позволяет определить тип события:

- красный цвет – превышение установок;
- синий цвет – срабатывание реле;
- жёлтый цвет – изменение состояния цифрового (дискретного) входа;
- зелёный цвет – срабатывание «события».

Если с помощью кнопок, расположенных ниже области построения графиков, совместить пунктирную линию, обозначающую событие и курсор, то справа от области построения можно прочитать информацию о событии.

В правом нижнем углу экрана расположен всплывающий список, позволяющий фильтровать события по типам. При выборе одного из типов событий остальные типы не отображаются.
В области построения графиков отображаются графики измерений по текущей группе каналов, но линии трендов обесцвечены и отсутствует информация о наименованиях каналов, цифровых значениях и т.п.

4.5 Журнал событий

Журнал позволяет сохранять информацию о состоянии дискретных входов, релейных выходов, действиях оператора, системных событиях прибора и т. д.

Внешний вид журнала событий представлен на рисунке 22.

Рисунок 22 – Журнал событий

В журнале событий записывается следующая информация:

– «События» – запись происходит при срабатывании любого события прибора. Текст записи содержит номер события, имя, присвоенное событию при настройке прибора, и состояние события – вкл./откл.

– «Сбои» – запись происходит при фиксации программой прибора сбоев в работе узлов и элементов прибора. Сбои не отображаются при просмотре журнала оператором.

Всплывающий список в левой части экрана позволяет фильтровать журнал событий, выбирая один из перечисленных типов событий.

При просмотре журнала событий, перемещение по записям осуществляется при помощи кнопок «Вверх» и «Вниз». Полоса в правой части таблицы позволяет определить текущее положение в списке.

Кнопка «Выбор даты» позволяет выбрать дату, с которой начинается просмотр журнала. При нажатии кнопки в открывшемся окне введите дату в формате «ДД/ММ/ГГ» и нажмите ОК.

Нажатие на сенсорный экран позволяет выделить одну из строк журнала событий – выделенная строка будет иметь более тёмный фон.

Кнопка «Переход в архив» позволяет перейти к просмотру архива в режиме «Журнал» см. 5.4.4, при этом, курсор архива будет наведён на событие, выделенное в журнале событий.

4.6 Копирование архива и журнала событий на Flash-накопитель.

Для того чтобы перенести архив на ПК с помощью съёмного накопителя необходимо вставить ММС карту памяти в соответствующий типу разъем на лицевой панели прибора. При этом изображение дискеты в левом верхнем углу экрана станет цветным. Далее войти в пункт «Меню» ► «Копирование архива».
Рисунок 23 – Копирование архива на Flash-накопитель

В верхней части экрана выводится общая информация об архиве прибора:

- объём архива в Мб;
- количество записей в архиве;
- дата начала первой записи;
- дата окончания последней записи (текущее время на момент входа в меню копирования архива).

На экране прибора представлена таблица, где для каждой записи приводятся следующие данные:

- номер записи в архиве;
- дата и время начала записи;
- дата и время окончания записи;
- количество точек – моментов времени, для которых сохранены данные.

Нажатие на сенсорный экран позволяет выделить одну из строк журнала таблицы записей – выделенная строка будет иметь более тёмный фон.
Кнопка справа от таблицы позволяет просмотреть выделенную запись в архиве прибора в режиме «Значения» см. 4.4.2.

Надпись внизу экрана показывает свободный объём в Мб MMC карты вставленной в разъём.

Всплывающего меню в левом верхнем углу экрана позволяет выбрать вариант копирования записей на карту памяти, рисунок 23.

– «Весь архив»;
– «С даты последнего копирования»;
– «Выбранный период». Если включен режим «выбранный период», то справа от всплывающего меню, выберите интервал записей, которые необходимо скопировать на накопитель.

После выбора варианта копирования, нажмите на кнопку «Начать», в центре появится шкала копирования архива. На время копирования архива возможен переход в другие пункты меню и просмотр результатов измерений – копирование производится в фоновом режиме. В верхнем правом углу экрана выводится индикатор отображающий в процентах объём скопированных данных. Если необходимо прервать копирование, нажмите на кнопку «Отмена».

Продолжительность процедуры копирования архива зависит от объёма архивных данных и количества записей в архиве:

– копирование записи содержащей 84600 точек (1 сутки с частотой записи 1 секунда для 16 каналов) потребует 60 секунд;
– копирование архива целиком может занять до 35 минут.

Архив копируется в файл с расширением .RGA. На одну MMC карту могут быть скопированы файлы архива с нескольких приборов.

ВНИМАНИЕ имя файла не позволяет установить, с какого прибора скопирован архив (принадлежность файла может быть установлена только при расшифровке файла). Просмотр архива и его дальнейшая обработка осуществляется с помощью программы «RegeDVI» поставляемой в комплекте с прибором.

Для копирования журнала на MMC следует перейти в раздел меню «Журнал» и нажать кнопку «копировать журнал».
5 КОНФИГУРИРОВАНИЕ ПРИБОРА.

5.1 Элементы интерфейса для ввода с помощью сенсорного экрана

Для ввода значений параметров настройки в меню прибора предусмотрены следующие элементы управления:

– окно ввода символов;
– всплывающий список;
– флажок.

5.1.1 Окно ввода символов.

Рисунок 24 – Окно ввода символов
Окно ввода символов позволяет вводить символы на русском (вариант а рисунок 24) и английском (вариант б рисунок 24) языке, а так же цифры и специальные символы (вариант в рисунок 24). В заголовке окна отображается редактируемый параметр. В ряде случаев используется окно ввода символов, позволяющее ввести только цифровые значения (вариант г рисунок 24).

В нижней части окна ввода символов расположены функциональные кнопки, имеющие следующее назначение:

- **Ру** – Русский алфавит;
- **Пробел**;
- **En** – Английский алфавит;
- **Удалить символ**;
- **Di** – Цифры и символы;
- **ОК** – выход с сохранением введенного текста;
- **↑** – Смена регистра;
- **Отм.** – выход без сохранения введенного текста.

5.1.2 Всплывающий список – элемент позволяющий выбрать один вариант из нескольких предложенных, рисунок 25

<table>
<thead>
<tr>
<th>1 сек</th>
<th>↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>нет</td>
<td></td>
</tr>
<tr>
<td>1 сек</td>
<td></td>
</tr>
<tr>
<td>2 сек</td>
<td></td>
</tr>
<tr>
<td>5 сек</td>
<td></td>
</tr>
<tr>
<td>10 сек</td>
<td></td>
</tr>
<tr>
<td>15 сек</td>
<td></td>
</tr>
<tr>
<td>30 сек</td>
<td></td>
</tr>
</tbody>
</table>

Рисунок 25 – Всплывающий список

5.1.3 Флажок – логический элемент управления Да/Нет, позволяет включить (вариант а рисунок 26) или отключить (вариант б рисунок 26) опцию.

а) ![ручное управление](image)

б) ![пересчет в градусы Кельвина](image)

Рисунок 26 – Флажок

Смена значения происходит при нажатии на квадрат флажка или на его подпись.
5.2 Общие указания по настройке прибора

Для входа в режим настроек необходимо нажать клавишу «Меню» ► «Настройки прибора». Программа прибора потребует ввести пароль на настройку. Ввод пароля выполняется с помощью окна ввода символов. Пароль, установленный на заводе-изготовителе, указан в паспорте прибора.

Примечание: для входа в меню «настройки прибора» может быть введен собственный пароль (см. 5.3.1), отличный от указанного в паспорте.

ВНИМАНИЕ Необходимо твердо помнить вновь введенный пароль, так как его потеря не позволит пользователю войти в режим «Настройки прибора».

При работе в режиме настройки прибора слева отображается меню настройки, позволяющее осуществлять навигацию по разделам меню (рисунок 27). Раздел меню, выделенный тёмным цветом, означает положение курсора в данный момент.

Для выхода из меню настройки прибора нажмите:
- кнопка «ОК» – выход с сохранением внесенных изменений;
- кнопка «Отмена» – выход без сохранения внесенных изменений.

ВНИМАНИЕ Изменения в настройках прибора принимаются в момент нажатия кнопки «ОК» при выходе из меню настройки.

До выхода из меню настройки принимаются только следующие изменения:
- установка даты и времени;
- калибровка каналов измерения (см. 5.6.11);
- калибровка сенсорного экрана (см. 5.4.6).
5.3 Общие настройки прибора, пароли, сохранение и загрузка файла конфигурации.

Рисунок 27 – Раздел меню «Общие», вкладка «Настройки»

5.3.1 Раздел меню «Общие», вкладка «Настройки» – позволяет настроить следующие параметры:

1) Имя прибора – текст до 32 символов (вводится с помощью окна ввода символов). Имя прибора отображается в верхнем левом углу экрана. Имя прибора содержится в файле архива и позволяет определить его принадлежность конкретному прибору, поэтому приборам следует присваивать уникальные имена. Значение по умолчанию для этого параметра «Многоканальный регистратор F1771».

2) Текущая дата и время – ввод текущей даты и времени (вводится с помощью окна ввода символов). Флажок - «переход на летнее время», если флажок установлен, то прибор автоматически переводит часы с «зимнего» на «летнее» время.
3) Пароль на настройку – изменение пароля для доступа к настройке прибора (до 10 символов).

4) Пароль оператора – изменение пароля оператора (до 10 символов). Пароль оператора позволяет получить доступ к просмотру архива, журналу и копированию архива.

Существует возможность удаления пароля («на настройку» или «оператора»). Для этого нажмите на поле изменения пароля и нажмите на кнопку «OK». После этого доступ к функциям прибора будет осуществляться без ввода пароля.

Пароль на настройку, введенный на заводе изготовителе, указан в паспорте прибора.

5.3.2 Раздел меню «Общие», вкладка «Данные, карта памяти», см. рисунок 28.

Рисунок 28 – Раздел меню «Общие», вкладка «Данные, карта памяти»
5.3.2.1 Сохранение и загрузка файла настроек прибора.

Кнопка «Сохранить» позволяет сохранить текущие настройки прибора на карту памяти. Перед сохранением настроек убедитесь, что карта вставлена в соответствующий разъем на передней панели прибора и индикатор дисков в правом верхнем углу экрана стал цветным, в противном случае прибор выдаст сообщение об ошибке. Сохраненный файл настроек имеет вид 123456.RGC, где имя файла (123456) — серийный номер прибора.

Для загрузки файла конфигурации, нажмите на кнопку «Загрузить», откроется таблица, в которой перечислены все файлы конфигурации находящиеся на карте памяти, рисунок 29.

Выберите необходимый файл из таблицы и нажмите кнопку «Загрузить», после загрузки нажмите на кнопку «ОК».

После настройки прибора и установки на позицию рекомендуется сохранить его конфигурацию на ПК. При сдаче в поверку или выходе прибора из строя сохранённая конфигурация может быть оперативно установлена на резервный прибор, что позволяет свести к минимуму время необходимое для ввода резервного прибора в эксплуатацию.

ВНИМАНИЕ Перед сохранением файла конфигурации рекомендуется снять пароли на настройку прибора, поскольку пароль сохраняется в файле наряду с другими параметрами. Если во время эксплуатации прибора пароль будет изменён, а
старый пароль утерян, то после установки файла конфигурации доступ к настройкам будет невозможен.

5.3.2.2 Меню пользователя

Кнопка «Загрузить» позволяет загрузить файл меню пользователя в энергонезависимую память прибора.

«Отображать меню пользователя» – позволяет отображать меню пользователя – экраны формы, созданные для реализации специализированных задач, например «тест уставок».

5.3.2.3 Пользовательские диапазоны

Кнопки «Загрузить» и «Сохранить» позволяют, соответственно, скопировать в энергонезависимую память прибора или на карту памяти пользовательские диапазоны – заданные в табличной форме функции преобразования значения входного сигнала в единицы физической величины (например, таблицы НСХ термопар).
5.4 Настройки экрана прибора
Внешний вид раздела меню «Экран» представлен на рисунке 30.

Рисунок 30 – Раздел меню «Экран», вкладка «Настройки»

Раздел меню «Экран», вкладка «Настройки» позволяет настроить следующие параметры.

5.4.1 Цикл отображения – определяет время, через которое происходит вывод очередной точки на экран. Для каждого цикла отображения в скобках указывается эквивалентная ему скорость прокрутки диаграммной ленты самописца. Значения выбирается с помощью всплывающего списка из ряда:

- «100 мс (12 м/ч)»;
- «1 сек (1200 мм/ч)»;
- «2 сек (600 мм/ч)»;
- «5 сек (240 мм/ч)»;
- «10 сек (120 мм/ч)»;
- «20 сек (60 мм/ч)»;
– «30 сек (40 мм/ч)»;
– «1 мин (20 мм/ч)»;
– «2 мин (10 мм/ч)»;
– «5 мин (4 мм/ч)».
Значение «по умолчанию» для этого параметра – «1 сек (1200 мм/ч)».

ВНИМАНИЕ Цикл отображения никак не связан с периодом записи данных в архив прибора.

5.4.2 Вид по умолчанию – позволяет задать оптимальный для работы оператора режим визуализации результатов измерений при включении прибора. Значения выбирается с помощью всплывающего списка из ряда:
– «График»;
– «Гистограмма»;
– «Один канал»;
– «Все каналы».
Значение «по умолчанию» для этого параметра – «График».
С помощью второго всплывающего списка можно задать группу или канал, который будет отображаться при включении прибора в выбранном режиме отображения.

5.4.3 Выход из диалоговых окон – время, через которое любое диалоговое окно будет автоматически закрыто. Значения выбирается с помощью всплывающего списка из ряда:
– «никогда»;
– «через 1 мин»;
– «через 2 мин»;
– «через 5 мин»;
– «через 10 мин».
Значение «по умолчанию» для этого параметра – «никогда».

5.4.4 Отключение экрана – определяет время, через которое отключится подсветка ЖК экрана после последнего нажатия на сенсорный экран. Если отсутствует необходимость в непрерывном визуальном контроле показаний прибора, рекомендуется отключать подсветку экрана – это позволит продлить срок эксплуатации ламп подсветки.
Значения выбирается с помощью всплывающего списка из ряда:
- «никогда»;
- «через 1 мин»;
- «через 2 мин»;
- «через 5 мин»;
- «через 10 мин».

При переходе в режим «Отключение экрана» зеленый светодиод на передней панели начинает мигать, что позволяет визуально контролировать работоспособность прибора.

Включение ламп подсветки происходит при:
- любом прикосновении к СЭ;
- при срабатывании любого реле;
- квитировании событий;
независимо от установленных параметров включения экрана см. 5.4.5.

5.4.5 Включение экрана – позволяет задать условия, при выполнении которых происходит включение отключённых ламп подсветки экрана.

Значения выбирается с помощью всплывающего списка из ряда:
- «Всегда» – функция включения экрана по условию не задействована;
- «По времени» – позволяет задать время включения подсветки экрана прибора. При выборе значения слева отображается окно, в которое может быть введено время в формате ЧЧ/ММ/СС.
- «По событию» – позволяет задать событие при наступлении которого происходит включение экрана. При выборе значения слева отображается всплывающий список, в котором может быть выбрано любое из 32 событий прибора (см. 6.9).

5.4.6 Вкладка «Сенсорный экран» раздела «Экран», позволяет производить калибровку сенсорного экрана, рисунок 31.
Рисунок 31 – Раздел меню «Экран», вкладка «Сенсорный экран»

Калибровка СЭ производится в случаях:

– расстояние от точки прикосновения к экрану до курсора (одиночный пиксель зелёного цвета, хорошо заметен при перемещении стилуса) превышает 7 мм;

– после обновления ПО прибора (в случае, если программа сама предлагает провести эту процедуру);

– после замены узлов прибора: ЦП или ЖКЦД в комплекте с СЭ.

Для проведения калибровки сенсорного экрана нажмите кнопку «Калибровка сенсорного экрана» и соблюдайте инструкции на экране прибора.

5.4.7 «Отключить щелчки при нажатии» – управление звуковым сопровождением нажатия на сенсорный экран прибора.
5.5 Настройка подключения прибора по интерфейсам.

5.5.1 Настройка параметров подключения по последовательному интерфейсу RS 232/485 настраивается во вкладке «Последовательный», рисунок 32.

5.5.2 Выбор протокола обмена прибора. Для того чтобы обмениваться данными с программой REGEDVI, необходимо использовать протокол REGEBUS.

5.5.3 Адрес прибора – задается от 0 до 255.

5.5.4 Последовательный интерфейс – список позволяет выбрать используемый интерфейс - RS232 или RS485.

5.5.5 Скорость передачи – список позволяет установить скорость передачи (по умолчанию - 19200). Максимально допустимая скорость передачи зависит от многих факторов, в том числе и от длины кабеля. Если наблюдаются сбои при передаче данных, попробуйте снизить скорость передачи.

Рисунок 32 – Раздел меню «Интерфейс», вкладка «Последовательный»
5.5.6 Список «Функция» позволяет определить способ использования интерфейса, выбрав из всплывающего списка одно из следующих значений:
- «Связь с ПК» – интерфейс используется в режиме «Slave» для связи с устройством верхнего уровня;
- «Опрос устройств» – интерфейс используется в режиме «Master» для опроса других устройств, обеспечивающих обмен данными по RS485.

5.5.7 Подключение прибора к сети Ethernet.
Внешний вид меню для настройки интерфейса Ethernet, показан на рисунке 33.

Рисунок 33 – Раздел меню «Интерфейс», вкладка «Ethernet»
Для подключения прибора к сети Ethernet необходимо установить значения следующих параметров:
- адрес IP (значение по умолчанию – 10.128.20.XXX);
- маска подсети (значение по умолчанию – 255.255.0.0);
- шлюз (значение по умолчанию – 10.128.1.5);
- порт (значение по умолчанию – 6001).

Необходимые сведения должен предоставить системный администратор сети организации, эксплуатирующей прибор.

ВНИМАНИЕ При использовании программы RegeDVI для связи с прибором, подключённом по Ethernet полю «адрес прибора» (см. 5.5.2.1) должно быть присвоено значение 1.

5.6 Настройка аналоговых входных каналов
5.6.1 Вкладка «Настройки» раздела «Аналоговые входы» изображена на рисунке 34.

![Многофункциональный регистратор F1771](image)

Рисунок 34 – Раздел меню «Аналоговые входы», вкладка «Настройки»
5.6.2 Номер настраиваемого аналогового входа, выбирается из всплывающего списка.

5.6.3 Поле «Тип сигнала» позволяет установить тип входного аналогового сигнала.

Значения выбирается с помощью всплывающего списка из ряда:
- «Отключен» – измерительный канал отключен, измерения не производятся, в окне с цифровыми показаниями вместо значений показываются пробелы.
- «Напряжение (U)» – для канала выбран режим измерения сигналов напряжения.
- «Ток (I)» – для канала выбран режим измерения сигналов постоянного тока.
- «Термопара (TC)» – для канала выбран режим измерения температуры с помощью термопары.
- «Термосопротивление (RTD)» – для канала выбран режим измерения температуры с помощью термосопротивления.
- «Сопротивление (R)» – для канала выбран режим измерения сопротивления.

5.6.4 «Диапазон измерения»
Поле «Диапазон измерения» позволяет выбрать один из возможных диапазонов измерений для выбранного типа сигнала. Опция недоступна для математических каналов. Состав списка меняется при смене значения «Тип сигнала».

Значения выбирается с помощью всплывающего списка из ряда:
1) для входных сигналов напряжения:
 - ± 200 мВ;
 - ± 2000 мВ;
 - ± 10000 мВ;
2) для входных сигналов постоянного тока:
 - ± 20 мА;
3) для измерения сопротивления постоянному току:
 - 100 Ом.
 - 400 Ом;
 - 2000 Ом;
4) для измерения температуры с помощью термопар:
 - TXA(K) хромель-алюмель (тип K);
 - TXK(L) хромель-капель (тип L);
5) для измерения температуры с помощью термосопротивлений с различными
значениями коэффициента α по ГОСТ 6651 (коэффициент W_{100} в редакции ГОСТ от
1994 и 1978 года):
- «50М» коэффициент α = 0,00428 °С^{-1} (W_{100} =1,4280);
- «50М*» коэффициент α = 0,00426 °С^{-1} (W_{100} =1,4260);
- «50П» коэффициент α = 0,00391 °С^{-1} (W_{100} =1,3910);
- «50П» коэффициент α = 0,00385 °С^{-1} (W_{100} =1,3850);
- «100П» коэффициент α = 0,00391 °С^{-1} (W_{100} =1,3910);
- «100П*» коэффициент α = 0,00385 °С^{-1} (W_{100} =1,3850);
- «гр.21» (46П) коэффициент α = 0,00391 °С^{-1} (W_{100} =1,3910);
- «гр.23» (53М) коэффициент α = 0,00426 °С^{-1} (W_{100} =1,4260);

5.6.5 «Ограничение диапазона».

Используется для ограничения диапазона измерений входного сигнала. Например,
необходимо измерять сигнал 0...+ 10 В, для измерения используется диапазон
± 10 В, ограничив диапазон от 0 до + 10 В, во всех графических формах представле-
ния измерительной информации за 100 % принимается диапазон 0...+ 10 В.

5.6.6 «Усреднение»

Параметр определяет количество измерений, для которого рассчитывается
среднее значение результатов измерений. Вычисленное среднее значение приня-
мается в качестве значения канала. Параметр задается в диапазоне от 0 (вычисле-
ние среднего не производится) до 600 измерений (точек). При использовании данной
функции измеренное значение не сохраняется - отображается и записывается в ар-
хив усредненное значение.

5.6.7 Для каждого канала может быть назначен один из фиксированных режи-
mов математической обработки результатов измерений. Возможность выбора режи-
ма определяется типом входных сигналов канала:
- извлечение квадратного корня – для сигналов тока и напряжения;
- пересчет в градусы Кельвина – для термопар и термосопротивлений.

Для установки режима следует нажать на флажок рядом с надписью или на са-
mу надпись с названием функции.
5.6.8 После настройки аналоговых входов, необходимо настроить «Каналы» прибора, см. 5.9. В меню настройки аналоговых входов предусмотрена кнопка, позволяющая перейти к настройкам канала, аргументом которого является данный аналоговый вход.

5.6.9 Копирование настроек аналогового входа

Для того чтобы скопировать настройки текущего канала в настройки других каналов прибора, нажмите на кнопку «Копировать настройки», появятся окна копирования настроек. Сначала нужно отметить флажками те настройки, которые необходимо копировать, (см. вариант а рисунка 35), затем указать флажками номера входов, в которые будут копироваться настройки (см. вариант б рисунка 35).

![Копирование настройки:](image)

5.6.10 Вкладка «Температурные датчики», рисунок 36.

Во вкладке «Температурные датчики» отображается температура внутреннего датчика, установленного внутри прибора, а также датчиков для компенсации температуры холодного спая. В окошке «Датчик 1» указана температура холодного спая для БИ1, в окошке «Датчик 2», указана температура холодного спая для БИ2.
5.6.11 Вкладка «Калибровка»

Вход в этот раздел меню, рисунок 37, предоставляет возможность проведения настроек для следующих видов и диапазонов входных аналоговых сигналов:

- напряжение: ± 200 мВ, ± 2 В, ± 10 В;
- ток ± 20 мА;
- сопротивление: 100 Ом, 400 Ом, 2 кОм.

Для настройки термопар и термосопротивлений используются диапазоны, указанные в таблице 7.
Таблица 7 – диапазоны измерения напряжения и сопротивления постоянному току, используемые для настройки ТП и ТС.

<table>
<thead>
<tr>
<th>Тип термопары, термосопротивления</th>
<th>Тип сигнала и диапазон, который необходимо настраивать</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термопара, тип K</td>
<td>Напряжение: 200 мВ</td>
</tr>
<tr>
<td>Термопара, тип L</td>
<td></td>
</tr>
<tr>
<td>Термосопротивление 50М, 53М («гр.23»)</td>
<td>α = 0,00428 °C⁻¹ и α = 0,00426 °C⁻¹ (W₁₀₀=1,4280 и W₁₀₀=1,4260)</td>
</tr>
<tr>
<td>Термосопротивление 50П, 100П, 46П («гр.21»)</td>
<td>α = 0,00391 °C⁻¹ и α = 0,00385 °C⁻¹ (W₁₀₀=1,3910 и W₁₀₀=1,3850)</td>
</tr>
<tr>
<td>Сопротивление: 100 Ом</td>
<td></td>
</tr>
<tr>
<td>Сопротивление: 400 Ом</td>
<td></td>
</tr>
</tbody>
</table>

Настройка каналов проводится только в случае, если погрешность измерений по каналам превышает предел допускаемого значения погрешности.

При проведении настройки каналов следует иметь в виду следующее:
настройка всех видов сигналов проводится на каждом из каналов для каждого диапазона измерения.
Выбор канала, тип сигнала, диапазон измерения выбираются при помощи всплывающих меню.
Для настройки нуля и масштаба следуйте инструкциям на экране прибора.
5.7 Дискретные входы

В качестве «дискретных входов» могут выступать дискретный (цифровые) входы прибора (см. XX) или события (см. XX).

Настройка дискретных входов производится в соответствующем пункте меню прибора, см. рисунок 38

5.7.1 С помощью всплывающего списка выбирается один из 8 дискретных входов прибора.

5.7.2 Для выбора типа дискретного входа служит всплывающий список:
- «отключён» - состояние входа не обрабатывается программой прибора;
- «частотный» - состояние входа обрабатывается программой прибора как количество срабатываний за единицу времени, аргументом дискретного входа служит один из цифровых (дискретных) входов прибора;
- «состояние ц.входов» - состояние входа обрабатывается как переменная принимающая значения «0» или «1», аргументом дискретного входа служит один из цифровых (дискретных) входов прибора;
– ‘состояние событий’ - состояние входа обрабатывается как переменная, принимающая значения «0» или «1», аргументом дискретного входа служит одно из событий прибора.

Рисунок 38 – раздел меню «Дискретные входы»

5.7.3 Рядом с выпливающим списком «Тип входа» имеется выпливающий список, позволяющий выбрать аргумент дискретного входа и содержащий:

– 8 цифровых (дискретных) входов прибора, если установлены типы входа «частотный» или «состояние ц.входов»;

– 32 события, если установлен тип входа «состояние событий».

5.7.4 Если установлен тип входа «частотный», то выводится поле «Коэффициент», которое может принимать значения от 1 до 109.

5.7.5 Если установлен тип входа «состояние ц. входов» или «состояние событий», то выводится выпливающий список «Отображение состояния», которой позволяет выбрать одно из следующих значений:

– «0/1»;
– «вкл/выкл».
5.8 Интерфейсные входы

Раздел меню «Интерфейс. входы» (см. рисунок 39) позволяет установить параметры чтения данных из устройств, подключенных к прибору по последовательному интерфейсу по протоколу связи ModBus, в режиме Slave.

5.8.1 Всплывающий список «Тип интерфейса» содержит значения:
- «отключён» – вход не обрабатывается программой прибора;
- «Последовательный» – программа прибора читает данные из устройств, подключённых по последовательным интерфейсам.

5.8.2 Поле «адрес устройства» позволяет задать адрес устройства в диапазоне от 1 до 255.

5.8.3 Всплывающий список «Функция» чтения позволяет выбрать из ряда значений:
- «0x03»;
- «0x04».

5.8.4 В поле «адрес» указывается адрес читаемого регистра в адресном пространстве опрашиваемого устройства.

5.8.5 Всплывающий список позволяет установить тип данных из ряда:
- «char»;
- «short»;
- «long»;
- «float».

5.8.6 Поле «позиция точки» может принимать значение от 0 до 4, доступно для всех типов данных кроме float.

5.8.7 Флаг «Переворачивать» доступен только для типов long и float.

5.8.8 С помощью кнопки «Копировать настройки» настройки одного интерфейсного входа могут быть присвоены другим (одному или нескольким) интерфейсным входам. Диалоговое окно копирования настроек позволяет выбрать, какие именно настройки копируются и каким входам они будут присвоены.
5.9 Настройка каналов прибора.
5.9.1 Вкладка «Настройки», позволяет настраивать параметры каналов прибора, см. рисунок 40.
5.9.2 Для выбора канала, необходимо ввести его номер в поле «Канал».
5.9.3 «Имя» канала - позволяет присвоить собственное название любому каналу. Текст вводится с помощью окна ввода символов и может содержать до 12 символов.
5.9.4 Тип входа. В сплывающем меню, выбирается тип входа, используемый выбранным каналом.
 – «отключен»;
 – «Аналоговый»;
 – «Дискретный»;
 – «Холодный спай»;
 – «Интерфейсный»;
 – «Мат. канал».
5.9.5 Номер входа выбирается из всплывающего меню.

Рисунок 40 – Раздел меню «Каналы», вкладка «Настройки»

5.9.6 Кнопка «Настройки входа» осуществляет переход к меню, «аналоговые входы», «дискретные входы», «интерфейс. входы» или «математический каналы», в зависимости от того какой тип входа выбран пользователем.

5.9.7 «Единицы измерения».

Позволяет присвоить каналу единицы измерения необходимые пользователю, максимум 12 символов. Значение по умолчанию - единица измерения выбранного диапазона входного сигнала для аналоговых входов или «ед» для других типов входов.

5.9.8 «Позиция точки».

Позволяет выбрать количество знаков после запятой для значений шкалы данного канала. Возможные значения – от 0 до 4 знаков, количество знаков после запятой предназначено для настройки «градуировки шкалы» и не влияет на точность отображаемого значения.
5.9.9 «Градуировка шкалы».

Для сигналов тока и напряжения, а так же математических каналов, «градуировка шкалы» позволяет присвоить диапазону входных сигналов шкалу значений измеряемой физической величины в соответствии с выбранными ранее единицами измерения (см. 5.9.7) и числом знаков после запятой (см. 5.9.7). Например: диапазону измерения ± 20 мА присвоена шкала 0,03 – 82,40 м³.

При измерении температуры от термопар или термосопротивлений функция «градуировка шкалы» действует аналогично функции «ограничение диапазона».

5.9.10 Если значение в поле «Позиция точки» больше или равно 1, флаг «Не отображать последний знак значения» позволяет округлять результат измерения до 4-х разрядов.

5.9.11 Вкладка «Уставки» изображена на рисунке 41. Каждый канал регистратора может иметь до 6 уставок.

<table>
<thead>
<tr>
<th>Многоканальный регистратор F1771</th>
<th>Группа 1</th>
<th>Меню</th>
<th>25.06.10 14:33:50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Настройки прибора</td>
<td>Настройки</td>
<td>Уставки</td>
<td></td>
</tr>
<tr>
<td>Общие</td>
<td>Установки:</td>
<td>Тип</td>
<td>Гистерезис:</td>
</tr>
<tr>
<td>Экран</td>
<td>10000</td>
<td><</td>
<td>30</td>
</tr>
<tr>
<td>Интерфейсы</td>
<td>11000</td>
<td><</td>
<td>25</td>
</tr>
<tr>
<td>Аналоговые входы</td>
<td>12000</td>
<td><</td>
<td>20</td>
</tr>
<tr>
<td>Дискретные входы</td>
<td>13000</td>
<td><</td>
<td>20</td>
</tr>
<tr>
<td>Интерфейс. входы</td>
<td>14000</td>
<td><</td>
<td>10</td>
</tr>
<tr>
<td>Мат. каналы</td>
<td>15000</td>
<td><</td>
<td>10</td>
</tr>
<tr>
<td>Каналы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Группы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>События</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Выходы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Архив</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рисунок 41 – Раздел меню «Каналы», вкладка «Уставки»
5.9.12 Уставке может быть присвоен один из двух типов: «Меньше» и «Больше».

5.9.13 Для типа уставки «Меньше» состоянию «Норма» соответствуют значение результата измерения (РИ) большее значения уставки (У): РИ > У. Переход в состояние «Не норма» происходит при уменьшении РИ до значений РИ ≤ У. При обратном увеличении РИ возврат в состояние «Норма» происходит при значениях РИ больших уставки (У) на значение гистерезиса (Г): РИ ≥У + Г см. рисунок 42. Гистерезис и уставка задаются в единицах измерения заданных при настройке шкалы канала см. 5.9.7.

Значение уставки - 40, гистерезис - 20.

Рисунок 42 – График работы уставки типа «Меньше»
Для типа уставки “Больше” состоянию “Норма” соответствуют значение результата измерения меньше значения уставки: $RI < U$. Переход в состояние «Не норма» происходит при увеличении RI до значений $RI \geq U$. При обратном уменьшении RI возврат в состояние «Норма» происходит при значениях результата измерений меньших уставки на значение гистерезиса: $RI \leq U - \Gamma$ см. рисунок 43.

Значение уставки - 80, гистерезис - 20.
Рисунок 43 – График работы уставки типа «Больше»

Задавая, например, для уставки U_1 тип «Меньше», а для уставки U_2 тип «Больше» можно состояние «Норма» определить как относящееся к интервалу между уставками U_1 и U_2 см. рисунок 43. Идентификация состояния «Не норма» используется для управления событиями прибора, см. 5.11.
5.9.14 Список «каналы» в верхней части экрана позволяет выбрать канал для которого будет осуществляться настройка уставок. Ниже отображается краткая информация о выбранном канале:
- Имя канала;
- Тип сигнала;
- Диапазон измерения;
- Градуировка шкалы.

5.9.15 Для добавления уставки нажмите на кнопку «Добавить». с помощью окна ввода символов задайте значение уставки. По умолчанию, созданной уставке присваивается тип «<» - «меньше» и гистерезис, в зависимости от положения десятичной точки, равный 3; 0.3; 0.03 или 0.003.

5.9.16 Для изменения типа уставки нажмите на значок, - <. После нажатия значок сменит значение на противоположное.

Для изменения значения гистерезиса уставки необходимо нажать на поле «гистерезис» и ввести новое значение с помощью окна ввода символов.
Для изменения значения созданной ранее уставки, установите на нее курсор, и нажмите на кнопку «Изменить».

5.9.17 Для удаления уставки нажмите кнопку «Удалить» на выбранной курсором уставке.

Уставки сортируются по возрастанию значений.

5.10 Конфигурирование групп каналов

Отображение каналов в режимах «графики», «диаграммы» а так же при просмотре архива производится в соответствии с сформированными группами.

Раздел меню «Группы» изображен на рисунке 45.

![Рисунок 45 – Раздел меню «Группы»](image-url)
5.10.1 Количество групп — 16. Каждая группа свободно конфигурируется пользователем. В группе может находиться от 1 до 6 каналов.

5.10.2 Номер настраиваемой группы выбирается из списка в верхней части экрана. Группе может быть присвоено имя — до 12 символов (текст вводится с помощью окна ввода символов). Присвоенное имя будет отображаться в списке выбора групп.

5.10.3 Для добавления канала в группу: из всплывающего меню выберите номер группы, далее нажмите кнопку «Добавить», откроется окно с полем для ввода номера канала, рисунок 46.

Рисунок 46 – Добавление канала в группу

5.10.4 Для удаления канала из группы нажмите кнопку «Удалить»

5.10.5 Для замены одного канала в выбранной группе другим, установите курсор на тот канал который необходимо заменить, нажмите кнопку «Изменить», из предложенного всплывающего списка выберите нужный канал и нажмите кнопку «OK».
5.11 Настройка событий
5.11.1 Событие – это логическая функция, принимающая значение «1» при выполнении нескольких условий, заданных пользователем.

Срабатывание события фиксируется в журнале прибора. События могут быть использованы для управления следующими функциями прибора:
– электрическая сигнализация (реле);
– вывод на экран прибора окна с сообщением для оператора и предложением квитировать это сообщение;
– изменение режима и частоты записи данных в архив прибора (см. 5.11.2 и 5.11.3);
– включение подсветки экрана.

Внешний вид меню настройки событий представлен на рисунке 47.

5.11.2 Пользователь может настроить до 32 событий. Выбор текущего настраиваемого события осуществляется с помощью всплывающего списка в верхней части экрана.

5.11.3 Поле «Имя» позволяет ввести название выбранного события с помощью окна ввода символов (до 27 символов). Присвоенное пользователем имя будет отображаться в журнале событий.
5.11.4 Событие формируется из одного или нескольких условий (до 6). Для добавления нового условия нажмите кнопку «Добавить», далее откроется диалоговое окно с выбором типа активации события (см. рисунок 48).

Любое условие может иметь один из следующих типов активизации:

– «По уставке» – условие выполняется при изменении состояния уставки. При выборе данного вида активизации необходимо указать канал (или выбрать любой) и номер уставки (или выбрать «любая»). Таким образом, в данном типе активизации возможны следующие варианты условия:

– активизация выбранной уставки на выбранном канале;
– активизация любой уставки на выбранном канале;
– активизация любой уставки на любом канале.

– «По заполнению архива» – условие выполняется при заполнении архива на заданную пользователем величину. Возможны следующие варианты порогового значения: 50 %, 60 %, 70 %, 80 %, 90 %, 95 %, 100 %.

Рисунок 47 – Раздел меню «События»
– «По цифровому входу» – условие выполняется в зависимости от состояния выбранного цифрового (дискретного) входа. При выборе данного вида активизации необходимо указать номер цифрового входа (от 1 до 8) и состояние выбранного входа для выполнения условия. Состояние цифрового входа может иметь одно из следующих значений:

– «По уровню 1» – цифровой вход включен;
– «По уровню 0» – цифровой вход выключен;
– «По переходу 0-1» – переход Ц. входа из состояния «0», в состояние «1»;
– «По переходу 1-0» – переход Ц. входа из состояния «1», в состояние «0»;
– «По событию» – условие выполняется в зависимости от состояния другого события. Данный тип активизации позволяет значительно увеличить количество необходимых условий, создавая одно событие из нескольких.
– «По реле» – условие выполняется в зависимости от состояния реле прибора. При выборе данного типа активизации необходимо указать номер реле, при срабатывании которого условие будет выполнено.

Примечание: любое событие может иметь до 6 условий, однако наличие видов активизации «по событию» и «по реле» позволяет задать для одного события свыше 150 разных условий.

5.11.5 Если для события выбрано несколько условий, то они объединяются пользователем при помощи логических операций «И», «ИЛИ», «HOR» (исключающее или), «НЕ».

Выбранная логическая операция определяет связь между выделенной и следующей строками.

5.11.6 С помощью СЭ можно выбрать одно из условий события – выделенное условие имеет синий фон (см. рисунок 47). Кнопка «Изменить» позволяет редактировать выделенное условие с помощью диалогового окна показанного на рисунке 48. Для удаления выделенного условия служит кнопка «Удалить».
5.11.7 Программа прибора позволяет задать минимальное время, в течение которого условия на срабатывание события должны выполняться прежде чем событие примет значение «1». Время задаётся в секундах с помощью окна ввода символов в поле «Срабатывание: задержка». По умолчанию задержка равна 0.

Для C1 установлена задержка 6 с.

Рисунок 49 – График работы задержки срабатывания события
5.11.8 Программа прибора позволяет ограничить время, в течение которого со-бытие после активизации находится в состоянии «1», одной секундой. Для этого необходимо включить флажок «однократное».

События С1 и С2 имеют одинаковые условия, но для С2 активирована функция «однократное».

Рисунок 50 – График работы «однократного» срабатывания события

5.11.9 Программа прибора позволяет задать время, в течение которого событие будет продолжать находиться в состоянии «1» если условия на срабатывание собы-тия уже не выполняются. Параметр задаётся в поле «Длительность» с помощью окна ввода символов и всплывающего списка, определяющего размерность заданного интервала времени. Размерность может быть выбрана из ряда: «секунды»; «мину-ты»; «часы»; «дни». График работы события для которого задана длительность представлен на рисунке 51: для события С1 установлена длительность 7 с.

Рисунок 51 – График работы события, для которого задана длительность
Если для одного события задействована функция «однократное» и установлена длительность, событие будет находиться в состоянии «1» в течение времени установленного в поле «длительность» + 1 секунда, независимо от времени, в течение которого выполняются условия на срабатывание события. График работы события для которого активирована функция «однократное» и задана длительность представлен на рисунке 52. События С1, С2 и С3 имеют одинаковые условия на срабатывание, при этом:

– для С1 активирована функция «однократное»;
– для С2 активирована функция «однократное» и установлена длительность 6 с
– для С3 активирована функция «однократное» и установлена длительность 2 с.

Рисунок 52 – График работы события, для которого активирована функция «однократное» и задана длительность

5.11.10 Программой прибора предусмотрена возможность организации квитирования событий. Функция активируется флажком «квитирование». После срабатывания события на экране прибора появится сообщение, содержащее: дату, время, номер и имя сработавшего события (см. рисунок 53). Данное сообщение останется на экране до тех пор, пока оператор не уберет его нажатием кнопки «OK».
В том случае, если за время отображения сообщения будет активизировано другое событие с включенной функцией квитирования, то соответствующее сообщение появится на экране после того как пользователь уберет первое.

В журнал событий записывается время, когда сработало событие и время, когда данное событие было квитировано, что позволяет контролировать действия операторов.

5.12 Настройка реле и аналоговых выходов

5.12.1 Вкладка «Аналоговые» выходы (см. рисунок 54) позволяет настроить аналоговые выходы прибора. Выбор номера настраиваемого выхода осуществляется с помощью выпадающего списка в верхней части экрана.

5.12.2 Для каждого выхода можно задать диапазон выходного сигнала выбрав необходимое значение из выпадающего списка.

Возможны следующие варианты выходного сигнала:
- «Отключено» – аналоговый выход отключен;
- «0...5мА»;
- «0...20мА»;
- «4...20мА».

По умолчанию все выходы отключены.

5.12.3 Ниже расположен список каналов прибора, позволяющий выбрать канал, значение которого будет передано на настраиваемый выход. По умолчанию выбран канал №1.
Рисунок 54 – Раздел меню «Выходы» вкладка «Аналоговые выходы»

5.12.4 Включение флажка «ручное управление», позволяет присвоить выходу постоянное значение, которое вводится с помощью окна ввода символов. Этот режим используется для поверки токового выхода (см. «Методику поверки прибора»).

5.12.5 Внешний вид меню настройки реле представлен на рисунке 55.

5.12.6 Список в верхней части экрана позволяет выбрать номер реле, для которого будет осуществляться настройка.

5.12.7 Список «Тип активизации» позволяет выбрать событие, при наступлении которого реле должно сработать (и вернуться в начальное положение при отключении данного события). Выбор значения «нет» отключает данное реле. По умолчанию, всем реле присвоено значение «Нет» в поле «вид активизации».
Рисунок 55 – Раздел меню «Выходы» вкладка «Реле»
5.13 Настройка записи в архив

Данное меню позволяет настроить режим работы архива и узнать его текущее состояние.

Внешний вид меню настроек архива показан на рисунке 56.

Рисунок 56 – Раздел меню «Архив»

5.13.1 Программ прибора позволяет установить период записи данных в архив. Для каждого периода записи в скобках указывается эквивалентная ему скорость прокрутки диаграммной ленты самописца.

Значения выбирается с помощью всплывающего списка «Период записи» из ряда:
- «100 мс (12 м/ч)»;
- «1 сек (1200 мм/ч)»;
- «2 сек (600 мм/ч)»;
- «5 сек (240 мм/ч)»;
- «10 сек (120 мм/ч)»;
- «20 сек (60 мм/ч)»;
- «30 сек (40 мм/ч)»;
- «1 мин (20 мм/ч)»;
- «2 мин (10 мм/ч)»;
- «5 мин (4 мм/ч)».

Данный параметр устанавливается общим для всех каналов прибора. От установленного периода записи зависит дискретность данных в архиве и скорость его заполнения (см. таблицу 8). Значение параметра «по умолчанию» – 1 с.

Таблица 8 – Период записи и расчётное время заполнение архива

<table>
<thead>
<tr>
<th>Период записи</th>
<th>Расчётное время заполнения архива</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 каналов</td>
</tr>
<tr>
<td>100 мс 12 м/ч</td>
<td>1 сутки</td>
</tr>
<tr>
<td>1 с 1200 мм/ч</td>
<td>7 суток</td>
</tr>
<tr>
<td>2 с 600 мм/ч</td>
<td>14 суток</td>
</tr>
<tr>
<td>5 с 240 мм/ч</td>
<td>36 суток</td>
</tr>
<tr>
<td>10 с 120 мм/ч</td>
<td>72 суток</td>
</tr>
<tr>
<td>30 с. 40 мм/ч</td>
<td>217 суток</td>
</tr>
<tr>
<td>1 мин. 20 мм/ч</td>
<td>434 суток</td>
</tr>
<tr>
<td>2 мин 10 мм/ч</td>
<td>2.4 года</td>
</tr>
<tr>
<td>5 мин 44 мм/ч</td>
<td>5.4 года</td>
</tr>
</tbody>
</table>
5.13.2 Программа прибора позволяет установить режим записи данных в архив прибора – непрерывный или при выполнении заданных пользователем условий. Значения выбирается с помощью всплывающего списка «Режим записи» из ряда:

– «Непрерывный» – запись в архив ведется непрерывно с момента включения прибора;

– «По событию» – запись в архив производится только в тот период времени, когда одно из событий прибора находится в состоянии «1».

В качестве события, управляющего режимом записи в архив, может быть назначено любое из 32 событий, выбор осуществляется с помощью всплывающего списка.

Значение по умолчанию для этого параметра – непрерывная запись.

5.13.3 Программа прибора позволяет автоматически увеличивать период записи в архив до максимального значения при выполнении заданных пользователем условий. Для управления данной функцией предусмотрен всплывающий список «Частая запись», позволяющий выбрать одно из значений:

– «Нет» – функция частой записи неактивна.

– «По событию» – в тот период времени, когда одно из событий прибора находится в состоянии «1», запись в архив производится с периодом 100 мс независимо от значения выбранного в списке «Период записи». При переходе управляющего события в состояние «0», период записи данных в архив принимает установленное значение.

В качестве события, управляющего режимом записи в архив, может быть назначено любое из 32 событий, выбор осуществляется с помощью всплывающего списка. Значение по умолчанию для этого параметра «Нет».

ВНИМАНИЕ При переходе на режим «Частая запись» в архиве прибора формируется новая запись (фрейм), при возвращении у установленному периоду записи так же формируется новая запись. Параметры управляющего события следует настраивать таким образом, чтобы избежать частого переключения режима записи, это усложняет навигацию в архиве прибора и его анализ.

При переходе на «частую запись» в новую запись (фрейм) записывается то значение РИ, которое было зафиксировано на момент перехода управляющего события в состояние «1».

5.13.4 В нижней части экрана отображается диаграмма, графически представляющая уровень заполнения архива, а так же приводится количество байт и записей (фреймов) в архиве.
5.14 Математические каналы

5.14.1 Общие сведения о математических каналах

При настройке прибора может быть сконфигурировано до 8 математических каналов (МК). Выбор настраиваемого канала осуществляется с помощью всплывающего списка в левом верхнем углу экрана (см. рисунок 57).

Программой прибора предусмотрено 3 типа математических каналов. Выбор типа математического канала осуществляется с помощью всплывающего списка в правом верхнем углу экрана из ряда:

- «отключён» – канал отключён;
- «простая функция» – построитель выражений;
- «статистика по каналам» – вычисление статистических параметров для сформированных пользователем групп каналов;
- «счётчик» – счётчик-интегратор.

Значение по умолчанию – «отключён». После выбора один из трёх типов МК на экран прибора выводятся параметры настройки, для выбранного типа.

ВНИМАНИЕ Программа прибора обрабатывает МК в порядке возрастания номеров. Если для одного из МК необходимо использовать в качестве аргумента другой МК, то его номер должен быть меньше (например, МК8 = МК1 + К2). В противном случае в вычислениях будет участвовать значение МК, соответствующее прошедшей, а не текущей секунде.

ВНИМАНИЕ Если для МК любого из трёх типов в качестве аргумента указан этот же МК (например, МК1=МК1+1), то в вычислениях участвует значение МК соответствующее прошедшей, а не текущей секунде.
5.14.2 Простая функция

Раздел меню «Мат.каналы» для канала типа «Простая функция» показан на рисунке 57.

Для записи выражений используются следующие группы элементов интерфейса:

- «Аргумент» – входные и математические каналы прибора или константы;
- «Оператор» – операторы, функции и скобки.

Группа элементов интерфейса «Аргумент» включает:

- всплывающий список входных и математических каналов прибора;
- кнопку «Константа», позволяющая с помощью окна ввода символов водить любые числа в диапазоне от ±1.18e-38 до ±3,4e+38.
Группа элементов интерфейса «Оператор» меняет состав элементов в зависимости от введённого выражения:

1) Если запись выражения не начата или введённое выражение оканчивается оператором, то доступны следующие элементы:
 - кнопка «(» – открывающая скобка;
 - всплывающий список для выбора функций.

Всплывающий список для выбора функций позволяет выбрать значение из ряда:
 - «корень» – извлечение квадратного корня;
 - «exp» – экспонента;
 - «ln» – натуральный логарифм;
 - «lg» – десятичный логарифм;
 - «sin» – синус;
 - «cos» – косинус;
 - «tg» – тангенс;
 - «Табл. n» – таблица с 1 по 5 (см. 6.12.3).

2) Если выражение оканчивается аргументом, то доступны кнопки для ввода операторов:
 - «+» – сложить;
 - «-» – вычесть;
 - «*» – умножить;
 - «/» – разделить;
 - «^» – возвести в степень (в качестве показателя степени может быть использовано любое число или выражение, следующее за оператором);
 - «)» – закрывающая скобка (доступна, только если в выражении присутствуют открытые скобки).

Для удаления введённых символов служит кнопка в правом нижнем углу экрана. Если необходимо полностью удалить введённое выражение, достаточно сменить тип МК.

Последовательность вычисления операторов и действий со скобками производится в соответствии с правилами математики.
Общее количество аргументов и операторов для одного канала 48, при этом:
- констант не более 12;
- открывающая и закрывающая скобка считаются как 2 оператора;
- «открывающая» скобка при функции не считается.

Рисунок 58 – Пример подсчета числа аргументов и операторов МК

5.14.3 Таблицы
Программа прибора позволяет задавать функции для использования в МК типа «построитель выражений» в виде таблиц. Для этого служит самостоятельный раздел меню «Таблицы», см. рисунок 59.

Рисунок 59 – Раздел меню «Таблицы»
Количество таблиц – до 5, количество строк в одной таблице – от 1 до 1024, общее количество строк во всех таблицах – 1024.

Всплывающий список в левом верхнем углу позволяет выбрать одну из 5 таблиц. Таблице может быть присвоено собственное название (12 символов). Название вводится в поле «Имя:» с помощью окна ввода символов.

Таблица содержит столбцы:
- «№» порядковый номер строки в таблице, присваивается автоматически программой прибора;
- «Аргумент» значение аргумента функции;
- «Результат» значение функции для соответствующего аргумента.

Для навигации в таблице служат кнопки «Вверх» и «Вниз».

Ввод и редактирование данных в таблице может осуществляться вручную с помощью СЭ. Для этого служат следующие элементы:
- кнопка «добавить», позволяющая с помощью окна ввода символов ввести в таблицу новую пару аргумент – результат;
- кнопка «Изменить», позволяющая с помощью окна ввода символов внести изменение в строку, выделенную в таблице с помощью СЭ;
- кнопка «Удалить», позволяющая удалить одну или несколько строк таблицы. Номер первой и последней строки подлежащего удалению диапазона вводятся, соответственно, в поля «записи с» и «по» с помощью окна ввода символов. «По умолчанию» значения в полях «Записи с» и «по» содержат номер выделенной строки.

Программа прибора позволяет избежать трудоёмкого ручного ввода и импортировать данные из MS Excel. Для этого необходимо в программе «MS Excel» создать массив данных для загрузки в таблицу прибора, соблюдая следующие требования: столбцы не имеют заголовков, левый столбец – аргумент, правый – результат. Пример такого массива приведён в таблице 9.
Таблица 9 – Пример массива данных для загрузки в таблицу

<table>
<thead>
<tr>
<th>Аргумент</th>
<th>Результат</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

Массив сохраняется в формат *.csv и копируется на MMC-карту. Если вставить карту в разъём на передней панели прибора и нажать кнопку «Импорт данных CSV», откроется диалоговое окно, позволяющее выбрать для загрузки один из файлов с расширением *.csv записанных на карту.

Рисунок 60 – Импорт данных в таблицу из файла *.csv
Программа прибора позволяет производить линейную интерполяцию данных таблицы (для управления служит флажок «линейная интерполяция»).

Работу функции «линейная интерполяция» иллюстрирует график на рисунке 58, построенный по данным таблицы 9. При записи примеров использованы обозначения, используемые программой прибора:

\[T_{bn}(X) = Y, \]

где \(T_b \) – функция заданная с помощью таблицы;
\(n \) – номер таблицы;
\(X \) – значение аргумента;
\(Y \) – результат табличного преобразования.

Если линейная интерполяция не включена, функция, описывающая зависимости результата от аргумента, имеет ступенчатый вид (график а на рисунке 61), если включена – ломаная линия, соединяющая значения (график б на рисунке 61). Например, без линейной интерполяции \(T_{b1}(8) = 12 \), а с линейной интерполяцией \(T_{b1}(8) = 9,33 \).

Если необходимо ограничить максимальное или минимальное значение функции, для которой назначена линейная интерполяция, следует ввести подряд 2 одинаковые строки таблицы, соответствующие этому значению. Например, график в рисунка 61 – построен для строк 1-3 таблицы 9, максимальное значение не ограничено. Поэтому программа прибора вычисляет результат для аргументов, значение которых больше максимального значения аргумента в таблице \(T_{b1}(24) = 17,6 \). График б рисунка 61 построен для тех же данных, но с целью ограничения максимального значения, строка, содержащая это значение, введена дважды (строки 3 и 4 таблицы 9). Поэтому, для любого значения аргумента, больше 16 значение результата равно 20: \(T_{b1}(24) = 16 \).
5.14.4 Статистика по каналам

Раздел меню «Мат. каналы» для канала типа «Статистика по каналам» показан на рисунке 62.

Программа прибора позволяет с помощью всплывающего списка в верхней части экрана выбрать статистическую функцию, из ряда:

– «среднее»;
– «сумма»;
– «минимум»;
– «максимум».

Для задания аргументов выбранной функции служат флажки с названиями всех каналов прибора (входных аналоговых и математических). Значение функции будет вычисляться каждую секунду для значений аргументов, соответствующих этой секунде.
5.14.5 Счётчик

5.14.5.1 Типы счётчиков

Программа прибора позволяет реализовать 2 типа счётчиков:

– «сумматор сигнала» – в качестве аргумента такого счётчика может выступать любой из каналов прибора (входной аналоговый или математический) см. рисунок 63;

– «счётчик событий» – в качестве аргумента такого счётчика может выступать любое из 32 событий, см. рисунок 64.

Выбор типа счётчика производится с помощью всплывающего списка «Тип счётчика».

Всплывающий список «Аргумент» позволяет выбрать аргумент – канал или событие, в зависимости от установленного типа счетчика.
5.14.5.2 Сумматор сигнала

Если установлен тип счётчика «сумматор сигнала», на экран выводится всплывающий список «Функция», позволяющий установить одно из следующих значений:
- «сумма» – МК вычисляет интегральную сумму значений аргумента;
- «среднее» – МК вычисляет среднее значение аргумента;
- «минимум» – МК вычисляет минимальное значение аргумента;
- «максимум» – МК вычисляет максимальное значение аргумента;
- «P – P» – МК вычисляет разность между минимальным и максимальным значением аргумента.

Счётчик типа «Сумматор сигнала» вычисляет значение заданной функции для выбранного аргумента в интервале времени, заданном параметрами работы счётчика (см. 5.12.5.4).

Рисунок 63 – Раздел меню «Мат. каналы» тип «Счётчик», тип счётика «Сумматор сигнала»
5.14.5.3 Счётчик событий

Если установлен тип счётчика «Счётчик событий» (см. рисунок 64), то МК вычисляет время, в течение которого событие, являющееся его аргументом, находилось в состоянии «1». Если событие-аргумент счётчика имеет признак «однократное» (см. 5.11.8), то счётчик будет подсчитывать количество срабатываний события.

Счётчик событий может использоваться для решения следующих задач:
– представление состояния дискретных событий в графическом виде (МК вводится в состав группы входных каналов см. 5.8);
– сохранение состояния дискретных событий в архиве прибора;
– ввод дискретных событий в качестве аргумента в МК типа «Простая функция» (см. 5.12.5.2).

Рисунок 64 – Раздел меню «Мат. каналы» тип «Счётчик», тип счётчика «Счётчик событий»
5.14.5.4 Настройка параметров работы счетчика

Для счетчика любого типа может быть задан ряд параметров, в соответствии с которыми будет производиться вычисление.

1) Условие вычислений

Программа прибора позволяет задать условия, при выполнении которых, значение аргумента в данный момент времени участвует в вычислении значения МК. Если условия не выполняются, значение аргумента не учитывается при вычислении значения МК. Для ввода условий служит всплывающий список «Условия вычислений», позволяющий выбрать одно из следующих значений:

- «всегда» – значение аргумента всегда участвует в вычислениях значения МК
- «Событие n» – значение аргумента участвует в вычислениях значения МК только если выбранное событие находится в состоянии «1».

2) Сброс

Программа прибора позволяет задать значение, которое принимает МК после сброса счетчика. Значение вводится с помощью окна ввода символов в поле «Сброс в». Максимальное значение – 9999, значение по умолчанию – 0.

3) Условие сброса

Программа прибора позволяет задать условия, при выполнении которых происходит сброс значения МК. Выбор условия сброса МК осуществляется с помощью всплывающего списка «условие:» из ряда:

- «нет» – условия сброса не заданы, в этом случае счетчик будет сбрасываться только при сбросе питания прибора или никогда;
- «никогда» – если в списке «Условия вычисления» выбрано значение «Всегда», программа прибора по умолчанию предлагает задать условия сброса «никогда»;
- «Событие n» – любое из 32 событий прибора.
4) Делитель

Программа прибора позволяет задать константу, позволяющую привести в соответствие размерность аргумента и результата вычисления интегральной суммы. Шкала канала, выступающего в качестве аргумента счётчика, может быть отградирована в единицах физической величины за единицу времени (например, т/ч, кг/мин). При этом суммирование аргумента производится ежесекундно, что приводит к ошибке. Константа вводится с помощью окна ввода символов «Делитель» и всплывающего списка, позволяющего выбрать интервал времени, соответствующий размерности аргумента, из ряда:

– секунды;
– минуты;
– часы;
– дни.

Окно ввода символов предусмотрено для случаев, когда аргумент имеет размерности типа «т/5 мин».

Значение по умолчанию для этого параметра –1 с.

5) Начальное значение счётчика после настройки

Программа прибора позволяет оператору задать значение, с которого начинается накопление интегральной суммы. Для ввода значения служит окно ввода символов «Задать значение:». Значение задаётся оператором однократно и после применения не сохраняется в настройках МК.

ВНИМАНИЕ Значение может быть задано только для типа счётчика «сумматор» или для счётчика событий, при вычислении других функций (см. 6.12.5.2) введённое значение игнорируется.

6) Запоминать значение при сбросе питания

Программа прибора позволяет установить признак «Запоминать значение при сбросе питания» с помощью флажка в нижней части экрана. Если флажок не установлен, то после сброса питания значение МК сбрасывается в соответствии с заданными условиями сброса.

ВНИМАНИЕ По умолчанию режим «запоминать значение при сбросе питания» отключен.
6 ПОДГОТОВКА К РАБОТЕ

6.1 Прежде, чем приступить к работе с прибором, необходимо ознакомиться с настоящим руководством по эксплуатации.

6.2 При получении прибора для эксплуатации следует:
– в случае транспортирования прибора в условиях повышенной влажности или низких температур выдержать его в течение 4 ч в нормальных условиях при температуре (20 ± 5) °C и относительной влажности (65 ± 15) %;
– осмотреть прибор и убедиться в отсутствии механических повреждений.

6.3 Установить прибор на место эксплуатации.
Габаритный чертёж прибора и вырез в щите см. рисунок 1. Для фиксации прибора служат 2 элемента, вставляющиеся в пазы на боковых стенках корпуса прибора и 2 винта, прижимающие крепёжные элементы к задней стенке щита.

Приборы могут размещаться в помещениях технических средств автоматизации и щитов управления (группы 2.2 и 2.3 по СТО 1.1.1.07.001.0675). По условиям электромагнитной совместимости и устойчивости к помехам прибор соответствует требованиям, предъявляемым к группе исполнения III категория функционирования В по ГОСТ 32137.

ВНИМАНИЕ Все электрические подключения должны выполняться при:
– отключенном напряжении питания прибора;
– отсутствии напряжения в цепях электрической сигнализации;
– отключённом питании подключаемых первичных преобразователей.

6.4 Все электрические подключения производятся на задней панели прибора см. рисунок 65.

На приборах, не имеющих ИПВП, в правом верхнем углу задней панели отсутствует вырез для соответствующего разъёма.

В нижней части задней крышки нанесены тип и модификация прибора, заводской номер и год изготовления.
6.5 Изготовить кабель питания. Для изготовления кабеля питания используйте розетку BLZ 5.00/3. Площадь сечения проводников не более 2,5 мм². Подключения следует производить в соответствии с таблицей 10. Фиксация проводников в разъёме производится винтами.

Таблица 10 – Подключение питания к розетке BLZ 5.00/3

<table>
<thead>
<tr>
<th>Контакт</th>
<th>Блок питания ~ 220 В</th>
<th>Блок питания 24 В</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Вход 1</td>
<td>+ 24</td>
</tr>
<tr>
<td>2</td>
<td>Корпус</td>
<td>Общ.</td>
</tr>
<tr>
<td>3</td>
<td>Вход 2</td>
<td>Корпус</td>
</tr>
</tbody>
</table>

Изготовленный кабель подключить к разъёму «Сеть».
6.6 В соответствии с рисунком 66 произвести подключение цепей входных аналоговых сигналов к розеткам B2L 3.5/32F. Площадь сечения проводников не более 1 мм². При использовании перемычек основные провода подключения должны быть спаяны с перемычками; общее сечение проводов не должно превышать 1 мм². Розетки для подключения входных аналоговых сигналов имеют пружинный фиксатор. Для фиксации проводника в розетке необходимо:

- вставить шило или отвёртку в прямоугольное отверстие расположенное рядом с контактом, который требуется подключить;
- вставить в круглое отверстие на внешней стороне розетки проводник;
- извлечь отвёртку;
- убедиться, что проводник надёжно зафиксирован в розетке.

Розетки подключить к разъёменам «Bх. 1-4», «Bх. 5-8», «Bх. 9-12», «Bх. 13-16».
Термопары подключаются компенсационными проводами, соответствующими типу термопары.

При использовании трехпроводной схемы подключения ТС необходимо выполнять подключение проводами одинаковой длины, сечения и материала провода. Для обеспечения метрологических характеристик рекомендуется проведение операций настройки каналов на месте эксплуатации с учетом линий связи, при этом разность сопротивлений проводов в линии связи не должна превышать 5 Ом. При
использовании четырёхпроводной схемы ограничение по разности сопротивлений проводов в линии связи отсутствует.

ВНИМАНИЕ При поставке прибор калируется для четырёхпроводной схемы включения ТС.

Линии связи входных аналоговых каналов прибора с первичным преобразователем должны быть помещены в надёжно заземлённые в стальные трубы или шланги.

ВНИМАНИЕ Категорически недопустимо прокладывать линии связи входных аналоговых каналов прибора и цепи питания или электрической сигнализации в общих трубах.

ВНИМАНИЕ Для неиспользуемых каналов рекомендуется установка перемычек на соединителях входных каналов между контактами 2 – 3, 10 – 11, 18 – 19, 26 – 27 (для неиспользуемых каналов 1 и 9 установка перемычек обязательна).

6.7 Для подключения цифровых (дискретных) входов используйте розетку DB-9F. Площадь сечения проводников не более 0,5 мм\(^2\). Контакты соединителя приведены в таблице 11. Фиксация проводников в соединителе осуществляется пайкой.

Таблица 11 – Подключение цифровых (дискретных) входов к розетке DB-9F.

<table>
<thead>
<tr>
<th>Контакт</th>
<th>Цель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Вход 1</td>
</tr>
<tr>
<td>2</td>
<td>Вход 2</td>
</tr>
<tr>
<td>3</td>
<td>Вход 3</td>
</tr>
<tr>
<td>4</td>
<td>Вход 4</td>
</tr>
<tr>
<td>5</td>
<td>Вход 5</td>
</tr>
<tr>
<td>6</td>
<td>Вход 6</td>
</tr>
<tr>
<td>7</td>
<td>Вход 7</td>
</tr>
<tr>
<td>8</td>
<td>Вход 8</td>
</tr>
<tr>
<td>9</td>
<td>Общий</td>
</tr>
</tbody>
</table>

Подключите розетку к соединителю «Вх. цифровые».
6.8 Для подключения реле используйте розетки BL 5.00/6. Площадь сечения проводников не более 2,5 mm². На одном соединителе расположены выводы двух реле (четного и нечетного номера). Контакты соединителей для Реле 1 и Реле 2 приведены в таблице 12. Контакт 1 расположен вверху розетки. Фиксация проводников осуществляется винтами.

Таблица 12 – Подключение реле к розетке BL 5.00/6

<table>
<thead>
<tr>
<th>Контакт</th>
<th>Цель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>НРК Реле 1</td>
</tr>
<tr>
<td>2</td>
<td>НЗК Реле 1</td>
</tr>
<tr>
<td>3</td>
<td>ОК Реле 1</td>
</tr>
<tr>
<td>4</td>
<td>НРК Реле 2</td>
</tr>
<tr>
<td>5</td>
<td>НЗК Реле 2</td>
</tr>
<tr>
<td>6</td>
<td>ОК Реле 2</td>
</tr>
</tbody>
</table>

Примечание: НРК – нормально-разомкнутый контакт реле;
ОК – общий контакт реле;
НЗК – нормально-замкнутый контакт реле.

Подключите розетки к соответствующим разъёмам: «Вых. реле 1-2» – «Вых. реле 15-16».

6.9 Для подключения выходных аналоговых сигналов используйте розетку WAGO 733-105. Площадь сечения проводников не более 0,5 mm². Контакты соединителей приведены в таблице 13. Контакт 1 расположен вверху соединителя. Диапазон выходного сигнала определяется установкой перемычек:
- для диапазона от 0 до 5 mA установить перемычку 3 – 4;
- для диапазона от 0 до 20 и от 4 до 20 mA – перемычку 3 – 5.
Таблица 13 – Подключение выходных аналоговых сигналов к розетке WAGO 733-105

<table>
<thead>
<tr>
<th>Контакт</th>
<th>Цель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Вых. 1 +</td>
</tr>
<tr>
<td>2</td>
<td>Вых. 1 –</td>
</tr>
<tr>
<td>3</td>
<td>Диап.</td>
</tr>
<tr>
<td>4</td>
<td>0 – 5 мА</td>
</tr>
<tr>
<td>5</td>
<td>0 – 20, 4 – 20 мА</td>
</tr>
</tbody>
</table>

Розетки для подключения выходных аналоговых сигналов имеют пружинный фиксатор, порядок работы с розеткой аналогично п. 7.6. Подключите розетки к соответствующим разъёмам: «Вых. 1» – «Вых. 4».

6.10 Для подключения датчиков к ИПВП используйте вилку SLS 5.08/8. Площадь сечения проводников не более 2,5 мм². Фиксация проводника в соединителе осуществляется винтами.

Рисунок 67 – Подключение датчиков к ИПВП

Д – датчик;
А – входной канал прибора.

Рисунок 67 – Подключение датчиков к ИПВП
Датчики могут подключаться к прибору следующими способами:
- по четырёхпроводной схеме – питание осуществляется отдельной парой проводников (см. вариант а рисунок 67);
- по двухпроводной схеме – источник питания подключается последовательно с входным каналом, на котором производится измерение. При этом подключение датчика возможно в разрыв «плюсовой» (см. вариант б рисунок 67) или «минусовой» (см. вариант в рисунок 67) линии связи с датчиком.

Подключите вилку к соединителю «Вых. пит».

6.11 Для связи с компьютером по интерфейсу RS-485 используется вилка DB-9M. Площадь сечения проводников не более 0,5 мм². Контакты соединителя приведены в таблице 14. Фиксация проводников в соединителе осуществляется пайкой.

Таблица 14 – Подключение линии связи по интерфейсу RS-485 к вилке DB-9M.

<table>
<thead>
<tr>
<th>Контакт</th>
<th>Цепь</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D+</td>
</tr>
<tr>
<td>4</td>
<td>D-</td>
</tr>
</tbody>
</table>

Подключите вилку к разъёму: «RS-485».

Подключение ПК по интерфейсу следует проводить через преобразователь кода RS-485/RS-232 или RS-485/USB, который должен обеспечивать автоматическую двунаправленную передачу данных с установленной в приборе скоростью.

6.12 Для связи с компьютером по интерфейсу RS-232 используйте вилку DB-9M. Площадь сечения проводников не более 0,5 мм². Контакты соединителя и схема соединения с COM–портом ПК приведены на рисунке 68. Фиксация проводников в соединителе осуществляется пайкой. Обмен данными выполняется по линиям RXD и TXD интерфейса и обеспечивается связь управляющих сигналов интерфейса.
6.13 Для связи с компьютером по интерфейсу Ethernet используйте разъём 8P8C (более известен как RJ-45). Разъём в комплект поставки не входит.

а) прямой порядок подключения;

б) перекрёстный (кросс-линковый) порядок подключения.

Рисунок 69 – Схема подключения по интерфейсу Ethernet
При подключении прибора к концентратору локальной вычислительной сети (ЛВС) следует использовать прямой способ подключения. Если необходимо соединить прибор непосредственно к ПК (без ЛВС) следует использовать перекрестный порядок подключения.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

7.1 Техническое обслуживание приборов состоит в соблюдении правил эксплуатации, хранения и транспортирования, изложенных в настоящем руководстве по эксплуатации, периодической поверке и ремонтных работах.

7.2 При эксплуатации должны выполняться:
- ежедневные осмотры (только для приборов, эксплуатирующихся на АЭС);
- ежемесячные осмотры;
- регламентные работы с периодичностью 1 раз в 2 года;
- работы по дезактивации (при необходимости).

7.2.1 Ежедневные осмотры должны предусматривать:
- проверку сохранности пломб;
- отсутствие обрыва проводов заземления;
- отсутствие вмятин, видимых механических повреждений на лицевой панели и корпусе;
- проверку температуры и влажности в помещении.

7.2.2 Ежемесячные осмотры должны предусматривать также:
- надёжность присоединения кабелей и проводов (питание, сигнализация, входы-выходы к объекту контроля);
- проверку состояния органов управления;
- проверку прочности крепления приборов при установке в щите;
- отсутствие пыли и грязи на приборах.

7.2.3 Регламентные работы должны проводиться перед периодической поверкой. Кроме операций по 7.2.1 и 7.2.2 необходимо выполнить чистку контактов разъёмных соединителей, при этом используются спирт и кисточка.

7.2.4 Дезактивация регистраторов, как приборов размещаемых в соответствии с 5.3, проводится без применения дезактивирующих растворов путём протирки слегка увлажнённой тканью.

7.3 Периодическую поверку приборов проводят не реже одного раза в 2 года в
соответствии с указаниями, приведёнными в разделе 8 настоящего руководства по эксплуатации. Если прибор нормально функционировал при опробовании (проверке на работоспособность) по 8.6.2, но не прошёл поверку по каким-либо видам сигналов или диапазонов измерения, то следует выполнить настройку по этим параметрам в соответствии с указаниями 3.5.3 и 4.5, после чего повторить поверку.

7.4 Перечень возможных неисправностей приборов приведен в таблице 15.

Таблица 15 – Перечень возможных неисправностей прибора

<table>
<thead>
<tr>
<th>Наименование неисправности, внешнее проявление и дополнительные</th>
<th>Вероятная причина</th>
<th>Способ устранения</th>
</tr>
</thead>
<tbody>
<tr>
<td>При включении прибора не загорается индикация на передней панели.</td>
<td>Неисправность в цепи питания прибора.</td>
<td>Проверить цепь питания и устранить неисправность.</td>
</tr>
<tr>
<td>Не срабатывают внешние устройства сигнализации</td>
<td>Ошибки подключения к соединителю прибора. Неисправность внешних устройств сигнализации или обрыв в цепи питания.</td>
<td>Проверить подключение к соединителю прибора. Устранить неисправность внешних устройств сигнализации или обрыв в цепи питания.</td>
</tr>
</tbody>
</table>

7.5 Прибор с неисправностями, не подлежащими устранению при профилактическом осмотре, или не прошедший периодическую поверку, подлежит ремонту.

В связи с тем, что приборы являются сложными программируемыми изделиями электронной техники и устранение в них неисправностей путем замены отдельных комплектующих может привести к изменению метрологических и программируемых характеристик, ремонт приборов рекомендуется производить на предприятии – изготовителе.
8 МЕТОДИКА ПОВЕРКИ

Настоящая методика поверки распространяется на регистратор щитовой Электронный Ф1771-АД-М и устанавливает методику первичной и периодической поверки.

Межповерочный интервал – 2 года.

8.1 Операции поверки.

При проведении поверки должны выполняться операции, указанные в таблице 16.

Таблица 16 – Операции поверки

<table>
<thead>
<tr>
<th>Операции поверки</th>
<th>Номер пункта</th>
<th>Обязательность проведения операции</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>первичная</td>
<td>периодич.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>поверка</td>
<td>поверка</td>
<td></td>
</tr>
<tr>
<td>Внешний осмотр</td>
<td>8.6.1</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Проверка электрического сопротивления и прочности изоляции</td>
<td>8.6.2</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Опробование</td>
<td>8.6.3</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Определение основной погрешности при измерении постоянного напряжения</td>
<td>8.6.4.1</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Определение основной погрешности при измерении постоянного тока</td>
<td>8.6.4.2</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Определение основной погрешности при измерении сигналов от термопреобразователей сопротивления</td>
<td>8.6.4.3</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Определение основной погрешности при измерении сигналов от термопар</td>
<td>8.6.4.4</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Определение основной погрешности при выдаче аналоговых сигналов</td>
<td>8.6.4.5</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Периодическую поверку регистратора допускается производить только по тем требованиям, которые определяют пригодность регистраатора для применяемых диапазонов измерений.
8.2 Средства поверки.
При проведении поверки должны применяться средства поверки, указанные в таблице 17.

Таблица 17 – Средства поверки

<table>
<thead>
<tr>
<th>Номер Пункта</th>
<th>Наименование, тип основного и вспомогательного средства поверки</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.4.1, 8.6.4.4</td>
<td>Компаратор напряжений Р3003; режим выдачи напряжения постоянного тока в диапазоне от 0 до 10 В; КТ 0,0005</td>
</tr>
<tr>
<td>8.6.4.2</td>
<td>Калибратор программируемый П320; режим выдачи постоянного тока в диапазоне от 0 до 20 мА; пределы допускаемой основной погрешности ± (0,1 ∙ Iк + 1) мкА</td>
</tr>
<tr>
<td>8.6.4.3</td>
<td>Многоцелевая мера электрического сопротивления Р4831; режим выдачи значений сопротивления в диапазоне от 0 до 2000 Ом; КТ 0,02 / 2 ∙ 10^{-6}</td>
</tr>
<tr>
<td>8.6.4.5</td>
<td>Однозначная мера электрического сопротивления Р331, 100 Ом; КТ 0,01</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Установка пробойная УПУ-1М; напряжение до 1500 В. Мегаомметр Ф4102/1М; диапазон измерений 0...20000 МОм.</td>
</tr>
</tbody>
</table>

Примечание: указанные средства поверки могут быть заменены аналогичными, обеспечивающими требуемую точность и пределы измерений.

8.3 Требования безопасности.
Требования безопасности согласно 2.1–2.7 настоящего руководства по эксплуатации.

8.4 Условия поверки
При проведении поверки должны соблюдаться нормальные условия:
– температура окружающего воздуха (20 ± 5) °С;
– относительная влажность от 30 до 80 %;
– напряжение питание указано на щитке прибора.
8.5 Подготовка к поверке.
Перед проведением поверки должны быть выполнены следующие подготовительные работы:
1) установить поверяемый прибор и используемые средства поверки в помещении с оговоренными в 8.4 условиями поверки;
2) выполнить соединения в соответствии со схемами, представленными на рисунках 70 – 75;
3) провести заземление поверяемого прибора и поверочного оборудования;
4) подключить питание.
8.6 Проведение поверки
8.6.1 Внешний осмотр производится путём осмотра поверяемого прибора без включения питания.
Не допускается к дальнейшей поверке приборы, у которых обнаружены:
– неудовлетворительное крепление соединителей на задней панели;
– грубые механические повреждения корпуса.
8.6.2 Проверка электрического сопротивления и прочности изоляции.
Проверку прочности изоляции в зависимости от исполнения приборов и номинального напряжения цепей, подвергающихся испытаниям, выполняют переменным напряжением практически синусоидальной формы частотой (50 ± 0,5) Гц величина которого составляет:
– для цепей питания и цепей сигнализации относительно корпуса (защитного заземления) и между собой – 1500 В;
– для аналоговых входов, аналоговых выходов, цифровых входов, интерфейсов RS485, RS232 и Ethernet относительно корпуса (защитного заземления) и между собой – 500 В.
Все контакты каждого входа/выхода, подвергаемого испытанию, объединяются между собой.
Испытательное напряжение следует повышать плавно от нуля до номинального значения. Изоляцию выдерживают под действием испытательного напряжения в течение 1 мин. Затем напряжение плавно снижают до нуля, после чего испытательную установку отключают.
Во время проверки не должно происходить пробоев и поверхностного перекрытия изоляции.
Проверку сопротивления изоляции перечисленных выше цепей относительно корпуса и между собой проводят мегомметром с рабочим напряжением
не более 500 В, отсчёт показаний выполняют через 1 мин после приложения напряжения. Сопротивление изоляции должно быть не менее 40 МОм.

8.6.3 Опробование (проверка на работоспособность).

Опробование проводится по схемам соединений на рисунках 70 – 75, по истечению времени установления рабочего режима прибора и эталонных средств измерений в течение не менее 30 мин. Проверка проводится поочередно для каждого из видов входных сигналов, для которых выбирается по одному из входных каналов. Проверка проводится для одного из диапазонов измерений в точке, равной ± 0,5 положительной части диапазона. Для проверки сигналов от ТП значения входных сигналов задавать в соответствии с ГОСТ Р 8.585, для TC – в соответствии с ГОСТ 6651.

1) Выполнить установку требуемой конфигурации каналов.

2) Правильность функционирования контролировать в любом из режимов отображения, при этом результаты измерений для всех видов сигналов и диапазонов не должны отличаться от заданной проверяемой точки более ± 0,5 % от конечного значения диапазонов измерений.

Примечания – для сигналов от TC допускается проверка по одной из схем включения – 3-х проводной (рисунок 73) или 4-х проводной (рисунок 74), при этом должна быть проведена настройка для соответствующей схемы включения. Для сигналов от ТП результаты измерений должны быть больше значения проверяемой точки на температуру свободных концов ТП, которая определяется в режиме “Настройка”.

Изм Лист № докум. Подп. Дата
Рисунок 70 – Схема подключения входных каналов для U в диапазонах до ± 2 В и сигналов ТП

<table>
<thead>
<tr>
<th>Кан. №</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Цель</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ кнтр.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U+$</td>
<td>2</td>
<td>10</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>$U-$</td>
<td>3</td>
<td>11</td>
<td>19</td>
<td>27</td>
</tr>
</tbody>
</table>

+ — П303
- —

Рисунок 71 – Схема подключения входных каналов для U в диапазонах ± 10 В

<table>
<thead>
<tr>
<th>Кан. №</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Цель</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ кнтр.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{1+}</td>
<td>4</td>
<td>12</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>U_{1-}</td>
<td>5</td>
<td>13</td>
<td>21</td>
<td>29</td>
</tr>
</tbody>
</table>

+ — П303
- —

Рисунок 72 – Схема подключения входных каналов для постоянного тока

<table>
<thead>
<tr>
<th>Кан. №</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Цель</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ кнтр.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>9</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>$U+$</td>
<td>2</td>
<td>10</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>$U-$</td>
<td>3</td>
<td>11</td>
<td>19</td>
<td>27</td>
</tr>
</tbody>
</table>

+ — П320
- —
Рисунок 73 – Схема подключения входных каналов для сигналов ТС по 3-х проводной схеме

Рисунок 74 – Схема подключения входных каналов для сигналов ТС по 4-х проводной схеме и измерения сопротивления постоянному току

Рисунок 75 – Схема подключения выходного канала
8.6.4 Определение метрологических характеристик (МХ).

Определение основной приведенной погрешности приборов по входным и выходным каналам проводить по истечении времени установления рабочего режима, путем сравнения показаний испытуемых приборов с показаниями эталонных средств измерений, имеющих погрешность, не превышающую 1/5 допускаемой погрешности испытуемых приборов, в соответствии со схемами подключения (рисунки 70 – 75).

Значения погрешности измерений определяются для каждого из видов входных и выходных сигналов во всех диапазонах измерений, при этом для 8-канальных исполнений прибора – на разных каналах, выбираемых из каналов 1 – 8, а для 16-канальных исполнений прибора, на разных каналах, выбираемых из каналов 1 – 16. Результаты измерений входных сигналов контролировать в режиме “Все каналы” с одновременным отображением на экране в цифровом виде результатов измерений по каналам.

В случае отрицательных результатов поверки выполнить настройку канала в пункте меню “Калибровка” для соответствующего вида сигнала и диапазона и повторить поверку.

8.6.4.1 Определение основной погрешности измерений постоянного напряжения.

1) Поверку проводить по схеме, показанной на рисунке 70 для диапазонов измерений ± 200, ± 2000 мВ, и по схеме рисунка 71 для диапазонов измерений ± 10000 мВ.

2) Определение погрешности проводить в точках Uk, равных ± 0,1; ± 0,3; ± 0,5; ± 0,7; ± 0,9 конечного значения диапазона ± 200 мВ. Для остальных диапазонов определение погрешности проводить точках Uk, равных минус 0,9; 0,1; 0,9 конечного значения диапазонов.

3) Для результатов измерений \(U_{изм} \) должно выполняться условие:

\[
|U_{изм} - U_k| \leq |\Delta_d|,
\]

где \(\Delta_d \) – допускаемое значение основной абсолютной погрешности измерений, указанное в таблице 18, определяется по формуле (3).

\(U_{изм} \) – результат измерений;

\(U_k \) – значение напряжения в поверяемой точке.
\[\Delta_d = \gamma \cdot \frac{A_k}{100}, \]
(3)

где \(\gamma \) – предел дополнительной основной приведенной погрешности;
A\(_k\) – конечное значение диапазона измерений.

Таблица 18 – допускаемое значение основной абсолютной погрешности при измерении напряжения

<table>
<thead>
<tr>
<th>Диапазон, мВ</th>
<th>(\Delta_d), мВ</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 200</td>
<td>± 0,2</td>
</tr>
<tr>
<td>± 2000</td>
<td>± 2,0</td>
</tr>
<tr>
<td>± 10000</td>
<td>± 10</td>
</tr>
</tbody>
</table>

В случае выполнения условия (2) в указанных точках диапазонов измерений основная погрешность прибора в норме, результаты поверки положительные.

8.6.4.2 Определение основной погрешности измерений постоянного тока:

1) Определение погрешности следует проводить на диапазонах ± 20 мА. Калибратор подключать поочередно на входы поверяемых каналов по схеме рисунка 72

2) Поверку проводить в точках I\(_k\), определяемых следующим образом:

\[I_k = n \cdot I_p, \]
(4)

где \(I_p \) - конечное значение соответствующего диапазона измерений;
n = минус 0,9; 0,1; 0,9;
I\(_k\) – значение постоянного тока в поверяемой точке.

Для результатов измерений \(I_{изм} \) должно выполняться условие:

\[| I_{изм} - I_k | \leq | \Delta_d |, \]
(5)

где \(I_{изм} \) – результат измерений;
\(\Delta_d \) – допускаемое значение основной абсолютной погрешности измерений по формуле (3):
\[\Delta_d = \pm 0,013 \text{ мА для диапазонов измерений } \pm 20 \text{ мА}. \]

В случае выполнения условия (5) по всем каналам в указанных точках диапазонов измерения погрешность прибора в норме, результаты поверки положительные.
8.6.4.3 Определение основной погрешности измерений сигналов от термопреобразователей сопротивления.

1) Поверку проводить для всех типов ТС, на каналах, подключаемых (в зависимости от использования при эксплуатации) по одной из схем включения – 3-х проводной (рисунок 73) или 4-х проводной (рисунок 74), при этом настройка должна выполняться для соответствующей схемы включения.

2) В зависимости от типа ТС на поверяемом канале последовательно устанавливать на магазине сопротивлений значения R (Ом), соответствующие температуре Т (°C), указанные:

- для ТС типа 50М – в таблице 19;
- для ТС типа 50П – в таблице 20;
- для ТС типа 100П – в таблице 21;
- для ТС типа 53М – в таблице 22;
- для ТС типа 46П – в таблице 23.
Таблица 19 – Номинальные значения сопротивления при поверке для ТС типа 50М

<table>
<thead>
<tr>
<th>№ точки</th>
<th>T (°С)</th>
<th>R (Ом)</th>
<th>R (Ом)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-49</td>
<td>39,44</td>
<td>39,56</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>67,12</td>
<td>67,04</td>
</tr>
<tr>
<td>3</td>
<td>199</td>
<td>92,59</td>
<td>92,39</td>
</tr>
</tbody>
</table>

Таблица 20 – Номинальные значения сопротивления при поверке для ТС типа 50П.

<table>
<thead>
<tr>
<th>№ точки</th>
<th>T (°С)</th>
<th>R (Ом)</th>
<th>R (Ом)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-98</td>
<td>30,23</td>
<td>30,54</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>88,52</td>
<td>87,93</td>
</tr>
<tr>
<td>3</td>
<td>598</td>
<td>158,23</td>
<td>156,53</td>
</tr>
</tbody>
</table>

Таблица 21 – Номинальные значения сопротивления при поверке для ТС типа 100П

<table>
<thead>
<tr>
<th>№ точки</th>
<th>T (°С)</th>
<th>R (Ом)</th>
<th>R (Ом)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-198</td>
<td>18,12</td>
<td>19,38</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>177,04</td>
<td>175,86</td>
</tr>
<tr>
<td>3</td>
<td>598</td>
<td>316,46</td>
<td>313,06</td>
</tr>
</tbody>
</table>
Таблица 22 – Номинальные значения сопротивления при поверке для ТС типа 53М (гр23)

<table>
<thead>
<tr>
<th>T (°С)</th>
<th>R (Ом)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 40</td>
<td>43,97</td>
</tr>
<tr>
<td>80</td>
<td>71,06</td>
</tr>
<tr>
<td>170</td>
<td>91,38</td>
</tr>
</tbody>
</table>

Таблица 23 – Номинальные значения сопротивления при поверке для ТС типа 46П (гр21)

<table>
<thead>
<tr>
<th>T (°С)</th>
<th>R (Ом)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 90</td>
<td>29,33</td>
</tr>
<tr>
<td>200</td>
<td>81,43</td>
</tr>
<tr>
<td>590</td>
<td>144,37</td>
</tr>
</tbody>
</table>
3) Для результатов измерений $T_{изм}$ по каналу должно выполняться условие:

$$|T_{изм} - T| \leq |\Delta d|,$$ \hspace{1cm} (6)

где Δd – допускаемое значение основной абсолютной погрешности измерений по формуле (3);

$\Delta d = \pm 0,5 \, ^{\circ}C$ для ТС типа 50М, 53М (гр23);

$\Delta d = \pm 1,5 \, ^{\circ}C$ для ТС типа 50П и 100П, 46П (гр21);

T – значение температуры в поверяемой точке.

В случае выполнения условия (5) по всем каналам в указанных точках диапазона измерений погрешность прибора в норме, результаты поверки положительные.

8.6.4.4 Определение основной погрешности измерений сигналов от термопар.

1) Поверку прибора проводить для всех типов ТП по схеме рисунок 70.

2) Определить в соответствии с номинальной статической характеристикой преобразования выбранной термопары значение ТЭДС $U_{\text{ХК}}$, соответствующее $T_{\text{ХК}}$, например, для термопары типа K при $T_{\text{ХК}} = 20^{\circ}C$ значение $U_{\text{ХК}} = 0,798$ мВ, для термопары типа L при $T_{\text{ХК}} = 20^{\circ}C$ значение $U_{\text{ХК}} = 1,29$ мВ.

3) Поверку прибора производить, устанавливая на калибраторе значения вычисляемые по формуле, следующим образом:

$$U_{k} = U_{T} - U_{\text{ХК}},$$ \hspace{1cm} (7)

где U_k – значение напряжения, соответствующее температуре в поверяемой точке, с учетом температуры свободных концов ТП;

U_T – значения напряжения, соответствующее температуре в поверяемой точке из таблицы 24 – для термопары типа K; таблицы 25 – для термопары типа L.
Таблица 24 – Номинальные значения напряжения при поверке для ТП типа К

<table>
<thead>
<tr>
<th>№ точки</th>
<th>Значение T °C</th>
<th>Значение Uₜ, мВ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>– 93</td>
<td>– 3,337</td>
</tr>
<tr>
<td>2</td>
<td>650</td>
<td>27,025</td>
</tr>
<tr>
<td>3</td>
<td>1293</td>
<td>52,165</td>
</tr>
</tbody>
</table>

Таблица 25 – Номинальные значения напряжения при поверке для ТП типа L

<table>
<thead>
<tr>
<th>№ Точки</th>
<th>Значение T °C</th>
<th>Значение Uₜ, мВ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>– 96</td>
<td>– 5,446</td>
</tr>
<tr>
<td>2</td>
<td>450</td>
<td>35,888</td>
</tr>
<tr>
<td>3</td>
<td>796</td>
<td>66,129</td>
</tr>
</tbody>
</table>

4) Для результатов измерений ТИЗМ по всем каналам должно выполняться условие:

$$|Т_{ИЗМ} - T| \leq |\Delta д|, (8)$$

где $\Delta д$ – допускаемое значение основной абсолютной погрешности измерений по формуле (3)

$\Delta д = \pm 6,5 °C$ для ТП типа К;

$\Delta д = \pm 4,0 °C$ для ТП типа L;

T – значение температуры в поверяемой точке.

В случае выполнения условия (8) по всем каналам в указанных точках диапазонов измерений, погрешность прибора в норме, результаты поверки положительные.
8.6.4.5 Определение погрешности измерения сопротивления следует проводить по 4-х проводной схеме (рисунок 74). Определение погрешности проводить в точках \(R_k \), равных 0,1; 0,5; 0,9 конечного значения диапазона измерений.

Для результатов измерений \(R_{ИЗМ} \) должно выполняться условие:

\[
|R_{ИЗМ} - R_k| \leq |\Delta д|, \tag{9}
\]

где \(\Delta д \) – допускаемое значение основной абсолютной погрешности измерения по формуле (3):

\[
\Delta д = \pm 0,25 \text{ Ом для диапазона измерений (0 – 100) Ом;}
\]

\[
\Delta д = \pm 1,0 \text{ Ом для диапазона измерений (0 – 400) Ом;}
\]

\[
\Delta д = \pm 5,0 \text{ Ом для диапазона измерений (0 – 2000) Ом;}
\]

\(R_{ИЗМ} \) – результат измерений;

\(R_k \) – значение сопротивления в поверяемой точке.

В случае выполнения условия (9) по всем каналам в указанных точках диапазонов измерений, погрешность прибора в норме, результаты поверки положительные.

8.6.4.6 Определение основной погрешности при выводе аналоговых сигналов.

1) Поверку проводить в режиме «Настройка» для всех выходных каналов цифро-аналогового преобразования с токовым выходом на диапазонах от 0 до 5 мА и от 0 до 20 мА по схеме рисунок 75.

2) При поверке диапазонов от 0 до 5 мА или от 0 до 20 мА переставлять перемычки в соответствии с рисунок 75.

3) Поверку проводить в точках \(I_k \), задаваемых в процентах как 0,1; 0,3; 0,5; 0,7; 0,9 от предельного значения выходного сигнала.

4) Результаты измерений \(I_{ИЗМ} \) определять по формуле:

\[
I_{ИЗМ} = \frac{U}{R}, \tag{10}
\]

где \(U \) – показания вольтметра (В);

\(R = 100 \text{ Ом} \) – сопротивление измерительной катушки.
5) Для результатов измерения $I_{ИЗМ}$ должно выполняться условие:

$$| I_{ИЗМ} - I_k | \leq \Delta \Delta$$

где $\Delta \Delta$ – допускаемое значение основной абсолютной погрешности изменений по формуле (2):

- $\Delta \Delta = \pm 0,013 \text{ мА}$ для выходного диапазонов (0 – 5) мА;
- $\Delta \Delta = \pm 0,05 \text{ мА}$ для выходного диапазонов (0 – 20) мА.

В случае выполнения условия (11) по всем выходам в указанных точках диапазонов погрешность прибора в норме, результаты поверки положительные.

8.6.5 Оформление результатов поверки

Результаты поверки оформляют в соответствии с Приказом № 1815 от 02.07.2015 с нанесением поверительного клейма при положительных результатах поверки на регистратор и записью в паспорте. Запись о поверке в паспорте заверяется знаком поверки и подписью поверителя.

При отрицательных результатах поверки применение прибора запрещается, о чём делается запись в протоколе поверки, заверенном поверителем.
9 МАРКИРОВАНИЕ, ПЛОМБИРОВАНИЕ, УПАКОВКА

9.1 На каждом приборе указано:
- обозначение прибора;
- товарный знак предприятия-изготовителя;
- порядковый номер прибора по системе нумерации предприятия-изготовителя;
- год изготовления;
- обозначения соединителей для обеспечения внешних соединений;
- обозначения органов управления прибора и индикаторов;
- для приборов изготовленных для АЭС, должен стоять штамп «Для АЭС».

9.2 Прибор пломбируется.

9.2.1 На корпус прибора наносятся 4 специальные наклейки, выполняющие роль гарантийных пломб. На наклейки нанесён логотип предприятия-изготовителя.

9.2.2 Наклейки наклеиваются на корпус прибора таким образом, чтобы исключить возможность вскрытия корпуса прибора не оставив видимых повреждений на- клеек.

9.2.3 Наклейка снимается с корпуса прибора, оставляя при этом на месте приклеивания ясно различимый узор. Если ранее снятая наклейка установлена повторно, при снятии она не оставит узора на месте приклеивания.

9.2.4 При повреждении или попытке повторной установки гарантийных наклеек предприятие-изготовитель не несёт ответственность за работу прибора, прибор признаётся не подлежащим гарантийному обслуживанию.

9.3 Для упаковки прибора используется потребительская упаковка из гофрированного картона и транспортная тара (транспортные ящики или контейнеры).

9.4 На потребительскую упаковку нанесен ярлык с указаниями:
- наименования изделия;
- обозначения изделия;
- количества изделий в упаковке;
- даты упаковки.

9.5 Транспортная маркировка содержит надписи и знаки: «Хрупкое, осторожно!», «Беречь от влаги», «Верх», «Не катать», «Ограничение температуры» (для приборов, транспортируемых в районы Крайнего Севера, с указанием конечных значений диапазона температур: «минус 20 ºC плюс 50 ºC»).
10 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

10.1 Приборы до введения в эксплуатацию следует хранить в упаковке предприятия-изготовителя при температуре окружающего воздуха от 5 до 50 °C и относительной влажности 80 % при температуре 25 °C.

10.2 Приборы без упаковки хранить в закрытом помещении на стеллажах при температуре окружающего воздуха от 5 до 50 °C и относительной влажности до 80 % при температуре 25 °C.

10.3 Транспортирование приборов производить в упаковке для транспортирования всеми видами закрытого транспорта при температуре окружающего воздуха от минус 20 до плюс 50 °C и относительной влажности до 98 % при температуре 35 °C, а самолетами – в отапливаемых герметизированных отсеках.

В связи с постоянной работой по совершенствованию изделия, повышающей его надежность и улучшающей эксплуатационные качества, в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.
<table>
<thead>
<tr>
<th>Обозначение</th>
<th>Наименование</th>
<th>Номер пункта РЭ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГОСТ 12.2.007.0-75</td>
<td>Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности</td>
<td>2.2</td>
</tr>
<tr>
<td>ГОСТ 14254-2015</td>
<td>Степени защиты, обеспечиваемые оболочками (код IP)</td>
<td>2.5</td>
</tr>
<tr>
<td>ГОСТ 15150-69</td>
<td>Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды</td>
<td>3.2.2</td>
</tr>
<tr>
<td>ГОСТ 17516.1-90</td>
<td>Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам</td>
<td>3.2.2</td>
</tr>
<tr>
<td>ГОСТ 32137-2013</td>
<td>Совместимость технических средств электромагнитная. Технические средства для атомных станций. Требования и методы испытаний</td>
<td>3.2.3, 6.3</td>
</tr>
<tr>
<td>ГОСТ 6651-2009</td>
<td>Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний</td>
<td>3.1, 3.4.2.1, 5.6.4, 8.6.3</td>
</tr>
<tr>
<td>ГОСТ Р 51318.22-99</td>
<td>Совместимость технических средств электромагнитная. Радиопомехи индустриальные от оборудования информационных технологий. Нормы и методы испытаний</td>
<td>3.2.3</td>
</tr>
<tr>
<td>ГОСТ Р 8.585-2001</td>
<td>Государственная система обеспечения единства измерений. Термопары. Номинальные статические характеристики преобразования</td>
<td>3.1, 8.6.3</td>
</tr>
<tr>
<td>Обозначение</td>
<td>Наименование</td>
<td>Номер пункта РЭ</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>НП-001-15</td>
<td>Общие положения обеспечения безопасности атомных станций</td>
<td>2.3</td>
</tr>
<tr>
<td>НП–031-01</td>
<td>Нормы проектирования сейсмостойких атомных станций</td>
<td>3.2.2</td>
</tr>
<tr>
<td>СТО 1.1.1.07.001.0675-2008</td>
<td>Атомные станции. Аппаратура, приборы, средства систем контроля и управления в составе АСУ ТП энергоблоков атомных станций.</td>
<td>6.3</td>
</tr>
<tr>
<td>ПБ 03-517-02</td>
<td>Общие правила промышленной безопасности для организаций осуществляющих деятельность в область промышленной безопасности опасных производственных объектов</td>
<td>2.4</td>
</tr>
<tr>
<td>ПБ 09-540-03</td>
<td>Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств</td>
<td>2.4</td>
</tr>
<tr>
<td>Приказ № 1815 от 02.07.2015</td>
<td>Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке</td>
<td>8.6.5</td>
</tr>
</tbody>
</table>
Лист регистрации изменений

<table>
<thead>
<tr>
<th>Изм.</th>
<th>Номера листов (страниц)</th>
<th>Всего листов (страниц) в документе</th>
<th>Входящий № сопроводительного документа и дата</th>
<th>Подпись</th>
<th>Дата</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ЗПА.849.011 РЭ/М

<table>
<thead>
<tr>
<th>Изм Лист № докум Подп Дата</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
</tr>
</tbody>
</table>